\(\frac{5}{9}\)+[\(\frac{4}{3}\)-\(\frac{3}{2}\)] -\(\sqrt{16}\)x\(\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
\(b,\left(\sqrt{1\frac{9}{16}-\sqrt{\frac{9}{16}}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}-\frac{3}{4}}\right):5\)
\(=\sqrt{\frac{13}{16}}:5\)
\(=\frac{\sqrt{13}}{4}:5\)
\(=\frac{\sqrt{13}}{20}\)
\(\frac{3}{4}-\left(\frac{1}{4}-x\right)=\frac{2}{3}\)
\(\frac{1}{4}-x=\frac{3}{4}-\frac{2}{3}\)
\(\frac{1}{4}-x=\frac{1}{12}\)
\(x=\frac{1}{4}-\frac{1}{12}\)
\(x=\frac{2}{3}\)
\(\frac{3}{4}-\left(\frac{1}{4}-x\right)=\frac{2}{3}\)
=> \(\frac{3}{4}-\frac{1}{4}+x=\frac{2}{3}\)
=> \(\frac{1}{2}+x=\frac{2}{3}\)
=> x = \(\frac{2}{3}-\frac{1}{2}\)
=> x = \(\frac{4-3}{6}\)
=> x = \(\frac{1}{6}\).
\(\sqrt{\frac{9}{16}}+\frac{\frac{3}{5}}{\left|2x-20\%\right|}=\frac{3}{7}\)
=> \(\frac{3}{4}+\frac{\frac{3}{5}}{\left|2x-\frac{1}{5}\right|}=\frac{3}{7}\)
=> \(\frac{\frac{3}{5}}{\left|2x-\frac{1}{5}\right|}=\frac{3}{7}-\frac{3}{4}\)
=> \(\frac{\frac{3}{5}}{\left|2x-\frac{1}{5}\right|}=\frac{-9}{28}\)
=> \(-9\left|2x-\frac{1}{5}\right|=28.\frac{3}{5}\)
=> \(-9\left|2x-\frac{1}{5}\right|=\frac{84}{5}\)
=> \(\left|2x-\frac{1}{5}\right|=\frac{\frac{84}{5}}{-9}\)
=> \(\left|2x-\frac{1}{5}\right|=\frac{-28}{15}\)
=> Không có x thoả mãn đk.
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
\(\frac{5}{9}+\left[\frac{4.2}{6}-\frac{3.3}{6}\right]-\frac{\sqrt{4^2}}{9}=\frac{5}{9}+\frac{\left(-1\right)}{6}-\frac{4}{9}=\left(\frac{5}{9}-\frac{4}{9}\right)-\frac{1}{6}=\frac{1}{9}-\frac{1}{6}\)\(\frac{2}{18}-\frac{3}{18}=-\frac{1}{18}\)
\(\frac{5}{9}+\left(\frac{8}{6}-\frac{9}{6}\right)-4\times\frac{1}{9}=\frac{-1}{18}\)