So sánh: \((\dfrac{1}{2})^{91}\) và \((\dfrac{1}{5})^{35}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)
\(\dfrac{-5}{6}>\dfrac{-91}{104}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)
=10
Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)
\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)
\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{37}{70}\)
Vậy....
b/ \(x+\dfrac{4}{5}=-\dfrac{5}{12}\cdot\dfrac{3}{25}\)
\(x+\dfrac{4}{5}=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}-\dfrac{4}{5}=-\dfrac{17}{20}\)
Vậy....
c/ \(\dfrac{x}{182}=-\dfrac{6}{12}\cdot\dfrac{35}{91}\)
\(\dfrac{x}{182}=-\dfrac{5}{26}\)
\(=>x\cdot26=-5\cdot182\)
\(26x=-910\)
\(x=-910:26=-35\)
Vậy....
a) Ta có: \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{7}{70}+\dfrac{30}{70}\)
hay \(x=\dfrac{37}{70}\)
Vậy: \(x=\dfrac{37}{70}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
Ta có :
+) \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}\)
+) \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{2}\)
Vậy,,,
Ta có: \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{2}{40}=\dfrac{1}{20}\)
Do đó: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{4}+\dfrac{1}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{3}{10}+\dfrac{1}{5}=\dfrac{3}{10}+\dfrac{2}{10}=\dfrac{1}{2}\)
hay \(S< \dfrac{1}{2}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
Ta có : \(\left(\dfrac{1}{2}\right)^{91}=\left(\dfrac{1}{2}\right)^{13\cdot7}=\left(\left(\dfrac{1}{2}\right)^{13}\right)^7\)
\(\left(\dfrac{1}{5}\right)^{35}=\left(\dfrac{1}{5}\right)^{5\cdot7}=\left(\left(\dfrac{1}{5}\right)^5\right)^7\)
Vì \(x^{7^{ }}=\) \(x^7\) mà \(\dfrac{1}{2}>\dfrac{1}{5}\) và 13 > 5
⇒ \(\left(\dfrac{1}{2}\right)^{91}>\left(\dfrac{1}{5}\right)^{35}\)
Tuổi bố Hùng là:
72 x 1/2 = 36 ( tuổi )
Bố Hùng sinh vào năm :
2022 - 36 = 1986 ( năm )
Thuộc thế kỉ 20 : XX .