Cho tam giác MNP biết 5M = 3N, 7M - 4N = 15
Tính số đo góc P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số hai góc cần tìm là : m, n( m,n thuộc N* , m;n < 180 độ)
theo đề bài ta có:
5m = 3n =>m/3 = n/5=> 7m/ 21 = 4n/20
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
7m/21 =4n/20= 7m-4n/ 21-20 = 15o/1o=15o ( vì 7m - 4n =15o)
do đó : 7m /21 =15o => 7m = 15o.21=> m=15o.21/7= 45o
4n /20=15o=> 4n =15o.20=> n= 15o.20/4= 75o
vậy.............
Theo đề bài ta có:
\(5M=3N\Rightarrow\frac{M}{3}=\frac{N}{5}\Rightarrow\frac{7M}{21}=\frac{4N}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{7M}{21}=\frac{4N}{20}=\frac{7M-4N}{21-20}=\frac{15^0}{1^0}=15^0\)
\(\Rightarrow\left\{\begin{matrix}\frac{7M}{21}=15^0\Leftrightarrow\widehat{M}=45^0\\\frac{4N}{20}=15^0\Leftrightarrow\widehat{N}=75^0\end{matrix}\right.\)
\(\Rightarrow\widehat{P}=180^0-\left(45^0+75^0\right)\)
\(\Rightarrow\widehat{P}=180^0-120^0\)
\(\Rightarrow\widehat{P}=60^0\)
Vậy \(\widehat{P}=60^0\)
Ta có: 5M=3N=> \(\dfrac{M}{3}=\dfrac{N}{5}\)
mà 7M-4N=15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{M}{3}=\dfrac{N}{5}=\dfrac{7M-4N}{21-20}=15\)
*\(\dfrac{M}{3}=15=>M=45\)
*\(\dfrac{N}{5}=15=>N=75\)
Tam giác MNP có: M+N+P=180
(hay)45+75+P=180
=>P=180-75-45=60
Vậy số đo góc P là 60 độ
vì tổng 3 góc của 1 tam giá = 180*mà GÓC M=70 *
=>N+M=180*-70*=110*=>GÓC N=M=110*/2=55*
Vì tam giác abc= tam giác mnp nên A=M=45°
Ta có M+N+P=180(tổng 3 góc một tam giác)
=>45°+N+60°=180°
=>N=180°-45°-60°=75°
a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)
\(\Rightarrow\widehat{A}=30^o\)
b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)
c) Ta có: \(NP^2=13^2=169\)(1)
\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)
Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)
\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)
Happy new year!!!