tim gia tri nho nhat cua p=a^2+4b^2-10a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=a2-10a+25+4b2-25
A=(a-5)2+4b2-25
Vì (a-5)2>=0
4b2>.=0
=>(a-5)2+4b2-25>=-25
=>Amin=-25<=>a=5;b=0
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
\(A=x^2-x=x\left(x-1\right)\)
Với \(x\ge0\)
\(\Rightarrow A\ge0\)
Với\(x< 0\)
\(\Rightarrow x^2-x< 0\)
Vậy GTNN A là A < 0 <=> x < 0
Ta có :
B= x-x2
= -(x-x2)
= 1/4-(x2-x+1/4)
= 1/4-(x-1/2)2 < hoặc = 1/4
Vậy Bmax= 1/4 <=> x=1/2
Ta có:
\(\left|x+5\right|\ge x+5\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge x+5+2-x\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge7\)
\(\Leftrightarrow A\ge7\)
Vậy \(MinA=7\) đạt được khi \(x+5\ge0\Leftrightarrow x\ge-5\)
\(P=a^2+a+1\)
\(=a^2+\frac{1}{2}\cdot2\cdot a+\frac{1}{4}+\frac{3}{4}\)
\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(a+\frac{1}{2}\right)^2\ge0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)
dấu "=" xảy ra khi :
\(\left(a+\frac{1}{2}\right)^2=0\Rightarrow a+\frac{1}{2}=0\Rightarrow a=-\frac{1}{2}\)
vậy
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
a2 + 4b2 - 10a = (a2 - 10a + 25) + 4b2 - 25
= (a - 5)2 + 4b2 - 25 \(\ge\)- 25
Vậy GTNN là - 25