K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

M=\(\frac{x^2+10x-7}{x^2+2x+1}=\frac{x^2+10x+25-32}{x^2+2x+1}=\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\le-32\)

Vay Max la -32 

Mk cx k chắc lắm đâu .

29 tháng 10 2017

B=(x^2-6x+9)-8

B=(x-3)^2-8

Vì (x-3)^2\(\ge0\forall x\)

-> (x-3)-8\(\ge-8\forall x\)

Dấu = xảy ra<=> x-3=0<=>x=3

C=2x^2-10x+1

C=2(x^2-5x+6,25)-11,5

C= 2(x-2,5)^2-11,5

Vì 2(x-2,5)^2\(\ge0\forall x\)

->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)

Dấu = xẩy ra<=> x-2,5=0<=>x=2,5

Vậy Min C là -11,5 <=> x=2,5

D= x^2+10-25

D=(x^2+10+25)-50

D=(x+5)^2-50

Vì (x-5)^2 \(\ge0\forall x\)

-> (x-5)^2-50\(\ge-50\forall x\)

Dấu = xẩy ra <=> x-5=0<=>x=5

Vậy Min D là -50 <=>x=5

29 tháng 10 2017

Tìm Max

B= 5x-x^2

B=-(x^2-5x+25/4)-25/4

B= -(x-5/2)^2-25/4

Vì -(x-5/2)^2\(\le0\forall x\)

-> -(x-5/2)^2-25/4\(\le\)-25/4

Dấu = xẩy ra <=> x-5/2=0<=>x=5/2

Vậy Max B là -25/4 <=> x=5/2

C=-x^2-6x+10

C=-(x^2+6x+9)+19

C= -(x+3)^2+19

Vì -(x+3)^2\(\le\)0

=> -(x+3)^2+19\(\le\)19

Dấu = xảy ra <=> x+3=0<=>x=-3

D= -2x^x+8x+12

D=-2(x^2-4x+4)+20

D=-2(x-2)^2 +20

 Vì -2(x-2)^2\(\le\)0

=> -2(x-2)^2+20\(\le\)20

Dấu= xẩy ra<=> x-2=0<=>x=2

Vậy Max D là 20<=>x-2

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$