Chứng minh rằng:\(a^{^n}\ge an.\)Với mọi n nguyên dương và a cũng nguyên dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n!=1.2.3...k...n\)
\(n!=n.\left(n-1\right).\left(n-2\right)...\left(n-k+1\right)...1\)
\(\Rightarrow n!.n!=\left(n!\right)^2=\left(1.n\right).\left[2.\left(n-1\right)\right].\left[3\left(n-2\right)\right]...\left[k\left(n-k+1\right)\right]...\left(n.1\right)\)
Ta sẽ chứng minh biểu thức trong mỗi ngoặc vuông đều không nhỏ hơn n.
Xét \(k\left(n-k+1\right)-n=kn-k^2+k-n=k\left(n-k\right)+\left(k-n\right)=\left(n-k\right)\left(k-1\right)\ge0\)
vì \(n>k\ge1\)
\(\Rightarrow k\left(n-k+1\right)\ge n\)
Do vậy ta có đpcm
Với mọi n nguyên thì \(B=3n+2\) luôn chia 3 dư 2
Mà mọi số chính phương khi chia 3 đều dư 0 hoặc 1
\(\Rightarrow\) B không phải là SCP
\(\Rightarrow\) A không phải số nguyên
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
đương nhiên rùi nên o phải chứng minh