giải pt: \(2x^2+8=14x-4\sqrt{4x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
Bài 1:
\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)
=>-2x+3m-4+20x-25=0
=>18x+3m-29=0
Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)
=>4-48m+64<=0
=>-48m+68<=0
=>-48m<=-68
=>m>=17/12
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
a/ ĐKXĐ: \(-\frac{1}{2}\le x\le4\)
\(\sqrt{4-x}=\sqrt{x+1}+\sqrt{2x+1}\)
\(\Leftrightarrow4-x=3x+2+2\sqrt{2x^2+3x+1}\)
\(\Leftrightarrow1-2x=\sqrt{2x^2+3x+1}\) (\(x\le\frac{1}{2}\))
\(\Leftrightarrow4x^2-4x+1=2x^2+3x+1\)
\(\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{7}{2}\left(l\right)\end{matrix}\right.\)
Bài này liên hợp cũng được
b/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{5x+1}^2-\sqrt{5x+1}\left(\sqrt{14x+7}-\sqrt{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\Rightarrow x=-\frac{1}{5}\\\sqrt{5x+1}-\sqrt{14x+7}+\sqrt{2x+3}=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x+1}+\sqrt{2x+3}=\sqrt{14x+7}\)
\(\Leftrightarrow7x+4+2\sqrt{10x^2+17x+3}=14x+7\)
\(\Leftrightarrow2\sqrt{10x^2+17x+3}=7x+3\)
\(\Leftrightarrow4\left(10x^2+17x+3\right)=\left(7x+3\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-2x}=a\\\sqrt{2x-1}=b\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}a=1-b\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)
\(\Leftrightarrow a^3+a^2-2a=0\)
\(\Leftrightarrow a\left(a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2-2x=0\\2-2x=1\\2-2x=-8\end{matrix}\right.\)
d/ ĐKXĐ: \(x\le\frac{5}{4}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5-4x}=a\\\sqrt[3]{x+7}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a^2+4b^3=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3-b\\a^2+4b^3=33\end{matrix}\right.\)
\(\Leftrightarrow\left(3-b\right)^2+4b^3=33\)
\(\Leftrightarrow4b^3+b^2-6b-24=0\)
\(\Leftrightarrow\left(b-2\right)\left(4b^2+9b+12\right)=0\)
\(\Rightarrow b=2\Rightarrow\sqrt[3]{x+7}=2\Rightarrow x=1\)