K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a = x + \(\frac{1}{x}\)

a = \(\frac{x^2}{x}+\frac{1}{x}=\frac{x^2+1}{x}\)

\(a=x^{13}+\frac{1}{x^{13}}=\frac{\left(x^{13}\right)^2}{x^{13}}+\frac{1}{x^{13}}=\frac{x^{26}+1}{x^{13}}\)

17 tháng 12 2016

A có hướng giải thế này nhưng hơi phức tạp

\(a=x+\frac{1}{x}\)

\(\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\)

\(\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)

\(\Leftrightarrow\left(a^2-2\right)^2=x^4+\frac{1}{x^4}+2\)

\(\Leftrightarrow\left(a^2-2\right)^2-2=x^4+\frac{1}{x^4}\)

Tương tự ta tính

\(a^3=x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)\)

\(\Leftrightarrow a^3-3a=x^3+\frac{1}{x^3}\)

\(\Leftrightarrow\left(a^3-3a\right)^2=x^6+\frac{1}{x^6}+2\)

\(\Leftrightarrow\left(a^3-3a\right)^2-2=x^6+\frac{1}{x^6}\)

Ta lại có

\(\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)

 Tới đây e tìm được \(\frac{1}{x^7}+x^7\)

Có \(\frac{1}{x^6}+x^6;\frac{1}{x^7}+x^7\)

Nhân vô sữ tìm được \(\frac{1}{x^{13}}+x^{13}\)

  

13 tháng 10 2019

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)

nên x + 1 = 0 => x = -1

Vậy x = -1

b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(1+\frac{x+4}{2000}+1+\frac{x+3}{2001}=1+\frac{x+2}{2002}+1+\frac{x+1}{2003}\)

\(\frac{2004+x}{2000}+\frac{2004+x}{2001}=\frac{2004+x}{2002}+\frac{2004+x}{2003}\)

\(\frac{2004+x}{2000}+\frac{2004+x}{2001}-\frac{2004+x}{2002}-\frac{2004+x}{2003}=0\)

\(\left(2004+x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\)

nên 2004 + x = 0 => x = -2004

Vậy x = -2004

=))

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

12 tháng 5 2017

cach lam thi ko nho nhung ket qua 100 % la 51/610

29 tháng 6 2018

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)

Nên x + 1 = 0 => x = -1

b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)

\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)

Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)

Nên x  +15 = 0 => x = -15

29 tháng 6 2018

a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1

1 tháng 3 2018

\(a,\left(\frac{5}{7}+\frac{9}{7}\right)x\frac{21}{28}\)

\(C1:=\frac{14}{7}x\frac{21}{28}=\frac{3}{2}\)

\(C2:=\frac{5}{7}x\frac{21}{28}+\frac{9}{7}x\frac{21}{28}=\frac{15}{28}+\frac{27}{28}=\frac{3}{2}\)

\(b,\frac{4}{5}x\frac{13}{14}+\frac{13}{14}x\frac{1}{5}\)

\(C1:=\frac{26}{35}+\frac{13}{70}=\frac{13}{14}\)

\(C2:=\frac{13}{14}x\left(\frac{4}{5}+\frac{1}{5}\right)=\frac{13}{14}x1=\frac{13}{14}\)

học tốt ~~~

1 tháng 3 2018

Cảm ơn bạn!

5 tháng 2 2018

a) câu này đơn giản là tìm giá trị nguyên thôi, câu này bạn tự làm

b) câu B) thì mẫu thức chung là \(x-4\)

cái dấu \(+\) ở chỗ thứ 2 chuyển thành \(-\)

giờ bận rồi để chiều làm tiếp, mình chỉ hướng dẫ vậy thôi