Tính: \(\frac{3^5.5.2^3-25.9^2.4}{2^2.3^2.5^2-3^3.5.2^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
EM KHÔNG PHẢI THÀNH VIÊN VIP NÊN TÔI SẼ KHÔNG TRẢ LỜI GIÚP EM!
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
= \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}\)
3/12.22 + 5/22.32 + 7/32.42 + ... + 19/92.102
= 3/1.4 + 5/4.9 + 7/9.16 + ... + 19/81.100
= 1 - 1/4 + 1/4 - 1/9 + 1/9 - 1/16 + ... + 1/81 - 1/100
= 1 - 1/100
= 99/100
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+..+\frac{17}{64.81}+\frac{19}{81.100}\)
\(A=\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{81-64}{64.81}+\frac{100-81}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{61}-\frac{1}{81}+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{100}=\frac{99}{100}\)
\(H=\frac{8}{1^2\cdot3^2}+\frac{16}{3^2\cdot5^2}+...+\frac{48}{11^2\cdot13^2}\)
\(H=\frac{1}{1^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{5^2}+...+\frac{1}{11^2}-\frac{1}{13^2}\)
\(H=1-\frac{1}{13^2}\)
\(H=\frac{168}{169}\)
Phương thiếu bước nhé
\(H=\frac{8}{1^2.3^2}+\frac{16}{3^2.5^2}+\frac{24}{5^2.7^2}+...+\frac{48}{11^2.13^2}\)
\(H=\frac{3^2-1^2}{1^2.3^2}+\frac{5^2-3^2}{3^2.5^2}+\frac{7^2-5^2}{5^2.7^2}+...+\frac{13^2-11^2}{11^2.13^2}\)
\(H=\frac{3^2}{1^2.3^2}-\frac{1^2}{1^2.3^2}+\frac{5^2}{3^2.5^2}-\frac{3^2}{3^2.5^2}+\frac{7^2}{5^2.7^2}-\frac{5^2}{5^2.7^2}+...+\frac{13^2}{11^2.13^2}-\frac{11^2}{11^2.13^2}\)
\(H=\frac{1}{1^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{5^2}+\frac{1}{5^2}-\frac{1}{7^2}+...+\frac{1}{11^2}-\frac{1}{13^2}\)
\(H=1-\frac{1}{13^2}=1-\frac{1}{169}=\frac{168}{169}\)
Chúc bạn học tốt ~
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2
=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100
= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100
= 1/1-1/4040100
= 1-1/4040100 < 1
Chúc bạn học tốt!
\(\frac{3^5.5.2^3-25.9^2.4}{2^2.3^2.5^2-3^3.5.2^2}=\frac{3^5.5.2^3-5^2.\left(3^2\right)^2.2^2}{2^2.3^2.5\left(5-3\right)}=\frac{3^5.5.2^3-5^2.3^4.2^2}{2^2.3^2.5\left(5-3\right)}=\frac{2^2.3^4.5\left(3.2-5\right)}{2^2.3^2.5.2}\)
\(=\frac{2^2.3^4.5}{2^3.3^2.5}=\frac{3^2}{2}=\frac{9}{2}\)