CMR với n lẻ , ta có :
( n2 + 8n + 15 ) chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên
Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)
mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2
Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ
Ta có:
n2 + 4n + 3
= n2 + n + 3n + 3
= n.(n + 1) + 3.(n + 1)
= (n + 1).(n + 3)
Do n lẻ => n = 2.k + 1 (k thuộc N)
=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)
= (2.k + 2).(2.k + 4)
= 2.(k + 1).2.(k + 2)
= 4.(k + 1).(k + 2)
Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2
-=> 4.(k + 1).(k + 2) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 (đpcm)
n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =
= (n-1)2(n+1)2(n2+1)2(n4+1)+512
Ta có: 512=29
Nhận thấy 512 chia hết cho 512
Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512
n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4
=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512
=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512
=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ
kham khảo ở đây nha
Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath
vào thống kê hỏi đáp của mình có chữ màu xanh nhấn zô đó = sẽ ra
hc tốt ~:B~
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
n=2k+1
A=(2k+1)^2+8(2k+1)+15=(2k+1)(2k+1)+16k+8+15
=(4k^2+2k+2k+1)+(16k+23)=4k^2+(2+2+16)k+23+1=4k^2+20k+24=4(k^2+5k+6)
A=4.B
(*) A chia hết cho 4
(**)Ta cần Cm: B= k^2+5k+6 chia hết cho 2
-nếu k chẵn k=2t: B=4t^2+10t+6=2(2t^2+5t+3) chia hết cho 2
-nếu k lẻ k=2t+1; B=(2t+1)^2+5(2t+1)+6=4t^2+4t+1+10t+5+6=4t^2+14t+12=2(2t^2+7t+6) chia hết cho 2
[hoặc lập luận với k lẻ => k^2 &5k đều lẻ tổng hai số lẻ phải chăn=> tổng hai số chẵn phải chẵn=>B chia hết cho 2
(*)&(**) => A chia hết cho 8=> dpcm
Ta có
n^2+8n+15 chia hết cho 8
<=>n^2+3n+5n+15
<=>n(n+3)+5(n+3)
<=>(n+5)(n+3)
=>(n+5) chia hết cho 8(1) , (n+3) chia hết cho 8(2)
Ta có:(1)
(n+5) thuộc B(8)
=> (n+5) thuộc {0;8;16;24;....}
=>n thuộc {-5;3;11;19;...}(3)
n sẽ là số lẻ vì B(8) đều là số chẵn, khi số chẵn trừ đi số lẻ(trừ 5) thì kết quả luôn là số lẻ(3)
Ta có:(2)
=> (n+3) thuộc B(8)
=> (n+3) thuộc {0;8;16;24;....}
=> n thuộc {-3;5;13;21;......}
n sẽ là số lẻ vì B(8) đều là số chẵn, khi số chẵn trừ đi số lẻ(trừ 3) thì kết quả luôn là số lẻ(4)
Từ (3),(4)
=> n là số lẻ