S=32013+32012-32011 chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)
\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)
\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)
\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)
\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)
Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ
=> tổng trên ko chia hết cho 120
k mk nha
không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn
\(\left(3^{2011}+3^{2010}\right):3^{2010}\)
\(=3^{2010}\left(3+1\right):3^{2010}\)
\(=4.3^{2010}:3^{2010}\)
\(=4\)
Ta có: \(\left(3^{2011}+3^{2010}\right):3^{2010}\)
=3+1
=4
Tổng 31 + 32 + 33 + 34 + 35 + … + 32012 không chia hết cho 120 vì tổng trên là một số lẻ, không chia hết cho một số chẵn.
tổng trên không chia hết cho 120. Vì các số trên có tổng là số lẻ lên không chia hết cho số chẵn
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
a)23!+29!-15!
=1.2.3.4....10.11+1.2.3.4.....10.11-1.2.3.4.....10.11...15
Ta thấy ở 3 số hạng trên đều có thừa số 11 nên 23!+29!-15! chia hết cho 11
b)tương tự
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
so abcd chia het cho 11 khi cong a+b+c+d thi cung chia cho 11
hay con goi a+b+c+d=11
theo đề toán ta co a+b+c+d chia het 11
=>A+B+C+D=11 hoặc 22 hoặc 33
nếu a+b+c+d=11 thì a+c=11 và b+d=0
=>có 8 số
nếu a+b+c+d=22 thì a+c=16,5 và b+d=5,5(loại)
nếu a+b+c+d=33 thì a+c =22 và b+d =11 (loại )
vậy có 8 số thảo mãn