Tìm x
\(\left(-2\right)^{x-1}+2007=2263\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(-2)x - 1 + 2007 = 2263
=> (-2)x - 1 = 256
=> (-2)x - 1 = (-2)8
=> x - 1 = 8
=> x = 9
vậy_
\(\left(-2\right)^{x-1}+2007=2263\)
\(\left(-2\right)^{x-1}=2263-2007\)
\(\left(-2\right)^{x-1}=256\)
\(\left(-2\right)^{x-1}=\left(-2\right)^8\)
\(\Rightarrow x-1=8\Rightarrow x=8+1\)
\(\Rightarrow x=9\)

Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha

\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
điểu kiện xác định x khác 2007 and x khác 2008
Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)
=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
=>\(49a^2+49a+49=57a^2+57a+19\)
=>\(8a^2+8a-30=0\)
=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)
=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)
Tự thay a xong suy ra x nhá
Mệt lắm r

\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)
\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)
\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)
\(\left(-2\right)^{x-1}+2007=2263\)
\(\left(-2\right)^{x-1}=2263-2007=256\)
\(\left(-2\right)^{x-1}=\left(-2\right)^8\)
\(\Rightarrow x-1=8\)
\(x=8+1=9\)