Tìm giá trị của B:
B=\(\frac{15.4^{12}.9^7-4.3^{15}.8^8}{19.2^{24}.3^{14}-6.4^{12}.27^5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3.5.\left(2^2\right)^{12}.\left(3^2\right)^7-2^2.3^{15}.\left(2^3\right)^8}{19.2^{24}.3^{14}-2.3.\left(2^2\right)^{12}.\left(3^3\right)^5}\)
\(=\frac{3.5.2^{24}.3^{14}-2^2.3^{15}.2^{24}}{19.2^{24}.3^{14}-2.3.2^{24}.3^{15}}\)
\(=\frac{5.2^{24}.3^{15}-3^{15}.2^{26}}{19.2^{24}.3^{14}-2^{25}.3^{16}}\)
\(=\frac{2^{24}.3^{15}.\left(5-2^2\right)}{2^{24}.3^{14}.\left(19-3^2\right)}\)
\(=\frac{3.1}{10}\)
\(=\frac{3}{10}\)
a) A = 110 - (-761) + 296 + 1454 - (-813 + 1077)
= 110 + 761 + 296 + 1454 - 264
= 871 + 1750 - 264
= 2631 - 264
= 2357
\(b=\text{}\dfrac{15.2^{24}.3^{14}-4.3^{15}.2^{24}}{19.2^{24}.3^{14}-6.2^{24}.3^{15}}=\)
\(=\dfrac{2^{24}.3^{14}\left(15-4.3\right)}{2^{24}.3^{14}\left(19-6.3\right)}=3\)
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)
\(B=\frac{15.4^{12}.9^7-4.3^{15}.8^8}{19.2^{24}.3^{14}-6.4^{12}.27^5}=\frac{3}{1}=3\)