Cho biểu thức A=căn x-1/ căn x .So sánh A với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0
a: P=1/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}+4=\sqrt{x}+5\)
=>\(\sqrt{x}=1\)
=>x=1(nhận)
b: \(P^2-P=P\left(P-1\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)
\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)
=>\(P^2< P\)
c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(-3\right)\)
=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)
=>\(x\in\varnothing\)
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
a) Có \(x+1< x+2\)
\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)
b) Vì \(\sqrt{x+1}< \sqrt{x+2}\)
\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)
\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)
hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)
biểu thức e viết liền quá khó phân biệt ví dụ như x +1 -\(\frac{2\sqrt{x}}{\sqrt{x-1}}\)hay là x +\(\frac{1-\sqrt{2x}}{\sqrt{x-1}}\)
a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:
Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))
Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)
b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5
Vậy, khi x = 4/9, giá trị của A là 6/5.
c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3
Vì A là một số âm, ta có: -√x/(x - 1) = -1/3
Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0
Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2
Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Khi x=9/4 thì A=3/2:1/2=3/2*2=3
Đề bài ko rõ nên làm 2 trường hợp :
+) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) ( Điều kiện : x > 0 )
Trừ A đi 1 ta có :
\(\dfrac{\sqrt{x}-1}{\sqrt{x}}-1=\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}=\dfrac{-1}{\sqrt{x}}< 0\left(\sqrt{x}>0\right)\)
\(\Leftrightarrow A-1< 0\Leftrightarrow A< 1\)
+) \(A=\dfrac{\sqrt{x-1}}{\sqrt{x}}\) ( Điều kiện : x > 1 )
Trừ A đi 1 , ta được :
\(\dfrac{\sqrt{x-1}}{\sqrt{x}}-1=\dfrac{\sqrt{x-1}-\sqrt{x}}{\sqrt{x}}\)
Nhận xét : Dễ thấy rằng , với x > 1 thì \(\sqrt{x-1}< \sqrt{x}\)
\(\Rightarrow\sqrt{x-1}-\sqrt{x}< 0\)
Mặt khác \(\sqrt{x}>0\left(x>1\right)\)
\(\Rightarrow A< 1\)