K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

do x<y =>a/m<b/m=>a<b

ta có:

x=a/m=2a/2m

y=b/m=2b/2m

do a<b=>a+a/2m<a+b/2m

<=>2a/2m<a+b/2m

<=>x<z (1)

do a<b=>a+b/2m<b+b/2m

<=>a+b/2m<2b/2m

<=>z<y (2)

từ (1) và (2)=>ĐPCM

 

7 tháng 6 2015

 x =a/m =>. x = 2a/2m 
y =b/m => y = 2b/2m 
z = (a+b)/2m 
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1) 
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2) 
Suy ra: 
2a < a +b < 2b 
Suy ra (chia 2 vế cho 2m) : 
2a/2m < (a +b)/2m < 2b 
R út gọn ta được : x < z <y

26 tháng 8 2016

1) Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

26 tháng 8 2016

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

15 tháng 8 2016

x=a/m=2a/2m             y=b/m=2b/2m

x<y nên a<b

=>2a<a+b và =>a+b<2b

=>2a/2m < a+b/2m < 2b/2m

=>x<y<z ( đpcm)

12 tháng 6 2017

theo đề bài ta có :

\(x=\frac{a}{m}\)\(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )

vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)

Vì a < b \(\Rightarrow\)a + b < b + c

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)

12 tháng 6 2017

Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)

Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)

Từ (1) và (2) suy ra đpcm

27 tháng 8 2015

C1:

Ta có:  \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)

Vì x<y nên a<b

Vì 2a< a+b< 2b

=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\left(m>0\right)\)

Vậy :  \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)

Hay: x<z<y

27 tháng 8 2015

bạn vào câu hỏi tương tự đó