Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 2
CM:\(a^2+b^2+c^2+abc< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
Ta có:
\(a< b+c\)
\(\Leftrightarrow2a< a+b+c=2\)
\(\Leftrightarrow a< 1\)
Tương tự ta cũng có:
\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)
\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)
\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)
Chu vi bằng 4 nên tất cả các cạnh phải nhỏ hơn 2
suy ra a^2 +b^2 +c^2 < 2(a+b+c) =8
Đề đúng : \(a^2+b^2+c^2+2abc< 2\)
Ta có : \(a+b+c=2\)
Áp dụng BĐT tam giác, ta có \(a+b>c\Leftrightarrow2>2c\Leftrightarrow c< 1\)
Tương tự : \(b< 1,a< 1\)
Suy ra \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow\left(1-a-b+ab\right)\left(1-c\right)>0\)
\(\Leftrightarrow1-a-b+ab-c+ac+bc-abc>0\)
\(\Leftrightarrow a+b+c-\left(ab+bc+ac\right)+abc< 1\)
\(\Leftrightarrow2\left(a+b+c\right)-2\left(ab+bc+ac\right)+2abc< 2\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ac\right)+2abc< 2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\) (đpcm)