K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Ta có \(\frac{n^5+1}{n+3}=\frac{\left(n^5+3n^4\right)+\left(-3n^4-9n^3\right)+\left(9n^3+27n^2\right)+\left(-27n^2-81n\right)+\left(81n+243\right)-242}{n+3}\)

\(=n^4-3n^3+9n^2-27n+81-\frac{242}{n+3}\)

Để đó là phép chia hết thi n + 3 phải là ước tự nhiên lớn hơn 3 của 242

\(\Rightarrow\left(n+3\right)\in\left(11;22;121;242\right)\)

Thế vô là ra. Cái còn lại làm tương tự

3 tháng 5 2021

a)n=5

b)X=16;-10;2;4

c)x=113;39;5;3;1;-1;-35;-109

23 tháng 11 2021

Answer:

a) \(\left(n+2\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)

\(\Rightarrow5⋮\left(n-3\right)\)

\(\Rightarrow n-3\) là ước của \(5\), ta có:

Trường hợp 1: \(n-3=-1\Rightarrow n=2\)

Trường hợp 2: \(n-3=1\Rightarrow n=4\)

Trường hợp 3: \(n-3=5\Rightarrow n=8\)

Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)

b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)

Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)

c) Ta có: \(x-2\inƯ\left(111\right)\)

\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)

\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)

d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)

Trường hợp 2: \(n+15=1\Rightarrow n=-14\)

Trường hợp 3: \(n+15=5\Rightarrow n=-10\)

Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)

Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)

e) \(3⋮n+24\)

\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)

f) Ta có:  \(x-2⋮x-2\)

\(\Rightarrow4\left(x-2\right)⋮x-2\)

\(\Rightarrow4x-8⋮x-2\)

\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)

16 tháng 6 2018

Bài 1:

a) ta có: 12-n chia hết cho 8-n

=> 4+8-n chia hết cho 8-n

mà 8-n chia hết cho 8-n

=> 4 chia hết cho 8-n

=> 8-n thuộc Ư(4)= (1;-1;2;-2;4;-4)

nếu 8-n = 1 => n = 7 (TM)

8-n = -1 => n = 9 (TM)

8-n = 2 => n = 6 (TM)

8-n = -2 =>n = 10 (TM)

8-n = 4 => n =4 (TM)

8-n = -4 => n = 12 (TM)

KL: n  = ( 7;9;6;10;4;12)

b) ta có: n2 + 6 chia hết cho n2+1

=> n2 + 1 + 5 chia hết cho n2+1

mà n2+1 chia hết cho n2+1

=> 5 chia hết cho n2+1

=> n2+1 thuộc Ư(5)=(1;-1;5;-5)

nếu n2+1 = 1 => n2=0 => n = 0 (Loại)

n2+1 = -1 => n2 = -2 => không tìm được n ( vì lũy thừa bậc chẵn có giá trị nguyên dương)

n2+1 = 5 => n2 = 4 => n=2 hoặc n= -2

n2+1 = -5 => n2 = -6 => không tìm được n

KL: n = (2;-2)

16 tháng 6 2018

Bài 2:

Gọi số tự nhiên cần tìm là: a 

ta có: a chia 4 dư 1 => a-1 chia hết cho 4 ( a chia hết cho 7)

a chia 5 dư 1 => a-1 chia hết cho 5

a chia 6 dư 1 => a-1 chia hết cho 6

=> a-1 chia hết cho 4;5;6 => a-1 thuộc BC(4;5;6)

BCNN(4;5;6) = 60

BC(4;5;6) = (60;120;180; 240;300;360;...)

mà a < 400

=> a-1 thuộc ( 60;120;180;240;300;360)

nếu a-1 = 60 => a=61 (Loại, vì không chia hết cho 7)

a-1 = 120 => a = 121 (loại)

a-1 = 180 => a = 181 (Loại)

a-1 = 240 => a = 241 (Loại)

a-1 = 300 => a = 301 ( TM)

a-1 = 360 => a = 361 (Loại)

KL: số cần tìm là: 301

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

15 tháng 12 2016

làm câu

20 tháng 1 2018

a, n+2 chia hết cho n-3

Suy ra (n-3)+5 chia hết cho n-3

Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3

suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}

Ta có bảng giá trị

n-3-1-515
n2-248

Vậy n={2;-2;4;8}

b, ta có Ư(13)={-1;-13;1;13}

ta có bảng giá trị

x-3-1-13113
x2-10416

Vậy n={2;-10;4;16}

c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}

ta có bảng giá trị

x-2-1-111-3-371311137
x1-99-1-393511339

Vậy n={1;-99;-1;-39;3;5;113;39}

21 tháng 11 2015

đọc xong đề bài chắc chết mất 

17 tháng 1 2016

trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

19 tháng 12 2021

Tk:

https://hoc24.vn/cau-hoi/tim-tat-ca-cac-so-nguyen-n-sao-cho-5n-8-chia-het-cho-n-3-ke-bang-nua-nhe.332999748255

19 tháng 12 2021

\(\Rightarrow5\left(n+3\right)-7⋮n+3\\ \Rightarrow n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-10;-4;-2;4\right\}\)