tính giá trị biểu thức :x mũ 3 + y mũ 3 - ( x mũ 2 - 2xy + y mũ 2).(x - y) tại x=-4 y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)
b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)
c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)
Vậy B luôn nhận gtr âm
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
`M=2(x^3 -y^3 )-3(x^2 +y^2)`
`M=2(x-y)(x^2 +xy+y^2 )-3x^2 -3y^2`
`M=2x^2 +2xy+2y^2 -3x^2 -3y^2`
`M=-x^2 +2xy-y^2`
`M=-(x^2 -2xy+y^2)`
`M=-(x-y)^2`
`M=-(1)^2`
`M=-1`
\(M=2\left(x^3-y^3\right)-3\left(x^2-y^2\right)\)
\(M=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x+y\right)\)
\(M=2\left[x^2+x\left(x-1\right)+\left(x-1\right)^2\right]-3\left(2x-1\right)\)
\(M=2\left(x^2+x^2-x+x^2-2x+1\right)-6x+3\)
\(M=6x^2-12x+5\)
Đề bài yêu cầu tính giá trị nhưng mình cũng không rõ là giá trị gì nên mình làm đến đây thôi nhé.
Thay `x=-2` và `y=2` vào `B` có:
`B=(-2)^2 .2-1/2 .(-2)-2`
`B=4.2+1-2=4+1-2=3`
Thay `x=-2` và `y=2` vào `B` ta được:
\(B=\left(-2\right)^2-2-\dfrac{1}{2}\left(-2-2\right)^3\)
\(B=4-2+32\)
\(B=4+30\)
\(B=34\)
Câu 1 :
\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)
\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)
\(=3x^2+12x-63-3x-12=3x^2+9x-75\)
Thay x = 1/2 vào ta được
\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)
Câu 2 :
\(5x^2+5xy+5x=5x\left(x+y+1\right)\)
Thay x = 60 ; y = 50 ta được
\(300\left(60+50+1\right)=33300\)
Câu 3 :
\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)
Thay x = 10 ; y = 1/2 ta được
\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)
1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)
\(=3x^2+12x-63+x^2+2\)
\(=4x^2+12x-61\)
\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)
2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)
3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)
A = x3 + y3 - (x2 -2xy + y2)(x-y)
A = x3 + y3 -(x-y)2(x-y)
A = x3 + y3 - (x-y)3
A = (-4)3+ 43 -( -4 -4)3
A = 0 + 512
= 512
Đáp án:
A = x3 + y3 -(x-y)2(x-y)
A = x3 + y3 - (x-y)3
A = (-4)3+ 43 -( -4 -4)3
A = 0 + 512
= 512