Giải bất phương trình:
\(\frac{1-\sqrt{1-4x^2}}{x}< 3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
TXĐ: \(D=\left[-\frac{1}{2};\frac{1}{2}\right]\backslash\left\{0\right\}\)
Trường hợp 1: \(x\in[-\frac{1}{2};0)\)
BPT tương đương: \(\hept{\begin{cases}-\frac{1}{2}\le x< 0\\1-\sqrt{1-4x^2}>3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\\sqrt{1-4x^2}< 1-3x\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\x< \frac{1}{3}\\1-4x^2< 1-6x+9x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{2}\le x< 0\\x< \frac{1}{3}\\x< 0\left(h\right)x>\frac{6}{13}\end{cases}}\Leftrightarrow-\frac{1}{2}\le x< 0\)
Trường hợp 2: \(x\in(0;\frac{1}{2}]\)
BPT tương đương: \(\hept{\begin{cases}0< x\le\frac{1}{2}\\1-\sqrt{1-4x^2}< 3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0< x\le\frac{1}{2}\\1-3x\ge0\\13x^2-6x< 0\end{cases}}\left(h\right)\hept{\begin{cases}0< x\le\frac{1}{2}\\1-3x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0< x\le\frac{1}{2}\\x\le\frac{1}{3}\\0< x< \frac{6}{13}\end{cases}}\left(h\right)\hept{\begin{cases}0< x\le\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow0< x\le\frac{1}{3}\left(h\right)\frac{1}{3}< x\le\frac{1}{2}\Leftrightarrow0< x\le\frac{1}{2}\)
Vậy \(S=\left[-\frac{1}{2};\frac{1}{2}\right]\backslash\left\{0\right\}\)