Cho hình vuông \(ABCD\). Gọi \(E\)là một điểm trên cạnh \(BC\)\(\left(E\ne B;E\ne C\right)\). Từ \(A\)kẻ \(Ax\perp AE\), cắt \(CD\)tại \(F\). Đường trung tuyến \(AI\)của \(\Delta AEF\)cắt \(CD\)tại \(K\). Qua \(E\)kẻ đường thẳng song song với \(AB\)cắt \(AI\)ở \(G\). Chứng minh rằng:
a) \(AE=AF\).
b) Tứ giác \(EGFK\)là hình thoi.
c) \(AF^2=FK.FC\).và
d) Khi \(E\)thay đổi trên \(BC\). Chứng minh rằng: \(EK=BE+DK\)và chu vi \(\Delta EKC\)không đổi.
A B C D E x F I K G
a) Xét \(\Delta BAE\)và \(\Delta DAF\)có:
\(AB=AD\)(vì \(ABCD\)là hình vuông).
\(\widehat{BAE}=\widehat{DAF}\)(cùng phụ với \(\widehat{DAE}\)).
\(\widehat{ABE}=\widehat{ADF}\left(=90^0\right)\).
\(\Rightarrow\Delta BAE=\Delta DAF\left(g.c.g\right)\).
\(\Rightarrow AE=AF\)(2 cạnh tương ứng) (điều phải chứng minh).
Vì \(Ax\perp AE\)(giả thiết).
\(\Rightarrow AF\perp AE\).
\(\Rightarrow\Delta AFE\)vuông tại \(A\).
Và có \(AE=AF\)(theo câu a)).
\(\Rightarrow\Delta AFE\)vuông cân tại \(A\).
Có trung tuyến \(AI\)ứng với cạnh huyền \(FE\).
\(AI\)đồng thời là đường cao của \(FE\).
\(\Rightarrow AI\perp FE\).
\(\Rightarrow GK\perp FE\).
Vì \(EG//AB\)(giả thiết).
\(\Rightarrow EG//CD\)(vì \(AB//CD\)do \(ABCD\)là hình vuông).
\(\Rightarrow GE//FK\).
\(\Rightarrow\widehat{GEF}=\widehat{KFE}\)(2 góc ở vị trí so le trong).
\(\Rightarrow\widehat{GEI}=\widehat{KFI}\).
Xét \(\Delta IGE\)và \(\Delta IKF\)có:
\(\widehat{GIE}=\widehat{KIF}\)(vì đối đỉnh).
\(IE=IF\)(giả thiết).
\(\widehat{GEI}=\widehat{KFI}\)(chứng minh trên).
\(\Rightarrow\Delta IGE=\Delta IKF\left(g.c.g\right)\).
\(\Rightarrow GI=KI\)(2 cạnh tương ứng).
Do đó \(I\)là trung điểm của \(GK\).
Xét tứ giác \(GEKF\)có:
2 đường chéo \(EF\)và \(GK\)cắt nhau tại \(I\).
Và \(I\)vừa là trung điểm của \(FE\), vừa là trung điểm của \(GK\).
\(\Rightarrow GEKF\)là hình bình hành.
Mà \(GK\perp FE\)(chứng minh trên).
\(\Rightarrow GEKF\)là hình thoi (điều phải chứng minh).