6/3x5+6/5x7+6/7x9+6/9x11+...+6/99x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6}{3\cdot5}+\dfrac{6}{5\cdot7}+\dfrac{6}{7\cdot9}+.....+\dfrac{6}{33\cdot35}\)
\(=\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{33\cdot35}\right)\cdot3\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{33}-\dfrac{1}{35}\right)\cdot3\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{35}\right)\cdot3\)
\(=\dfrac{32}{3\cdot35}\cdot3\)
\(=\dfrac{32}{35}\)
917749738461936926399639748776398646491639394748947630373937366
b)
S2=6/2x5+6/5x8+6/8x11+...+6/29x32
=2.(3/2.5+3/5.8+...+3/29.32)
=2.(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2.(1/2-1/32)
=2.15/32
=15/16
a)
Ta có:
S1=2/3x5+2/5x7+2/7x9+...+2/97x99
=1/3-1/5+1/5-1/7+...+1/97-1/99
=1/3-1/99
=32/99
Ta có: A = \(\frac{6}{5\times7}+\frac{6}{7\times9}+\frac{6}{9\times11}+...+\frac{6}{95\times97}+\frac{6}{97\times99}\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{95\times97}+\frac{1}{97\times99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{99}\right)\)
=> A = ...
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
Đặt A = 1/3.5 + 1/5.7 + 1/7.9 + ..... + 1/99.101
=> 2A = 2/3.5 + 2/5.7 + 2/7.9 + ..... + 2/99.101
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
=> 2A = 1/3 - 1/101
=> 2A = 88/303
=> A = 44/303
\(=3\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\right)=\)
\(=3\left(\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{101-99}{99.101}\right)=\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=\dfrac{3.98}{101}\)