Tìm x 9x-17÷4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-2x+1995}{x^2}\)Điều kiện \(x\ne0\)
\(=\frac{x^2-2x+1+1994}{x^2}\)
\(=\frac{\left(x-1\right)^2+1994}{x^2}\ge1994\)
\(Min_D=1994\Leftrightarrow x=1\)
\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
Câu 1:
Sửa đề: số đó chia 17 dư 9
Gọi số đã cho là A
=> A = 4a+3 = 17b+4 = 19c+13
Mặt khác:
A+ 25 = 4a + 3 + 25 = 4a + 28 = 4(a+7)
= 17b + 9 + 25 = 17b + 34 = 17(b+2)
= 19c+13+25 = 19c + 38 = 19(c+2)
Vậy A+25 chia hết cho cả 4,17,19
Ta lại có: ƯCLN(4;17;19) = 1
=> A+25 chia hết cho (4.17.19) = 1292
Vậy A+25 = 1292k
=> A = 1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1) + 1267
Vì 1267 < 1292 nên số đó chia 1292 dư 1267
a) <=> \(3x^4-9x^3+9x^2-27x=0\)
<=>\(3x\left(x^3-3x^2+3x-9\right)=0\)
<=>\(3x\left(x-3\right)\left(x^2+3\right)\)=0
<=>x=0 hoặc x=3
b) \(\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
<=>\(\left(x+3\right)\left(x^2-4x+5\right)=0\)
<=>\(\left(x+3\right)\left(\left(x-2\right)^2+1\right)=0\)
=> x=-3
a) 3x4 - 9x3 = -9x2 + 27x
3x4 - 9x3 + 9x2 - 27x = 0
3x(x3 - 3x2 + 3x - 9) = 0
3x[x2(x - 3) + 3(x - 3)] = 0
3x(x - 3)(x2 + 3) = 0
vì x2 + 3 > 0 nên:
3x = 0 hoặc x - 3 = 0
x = 0 : 3 x = 0 + 3
x = 0 x = 3
=> x = 0 hoặc x = 3
b) (x + 3)(x2 - 3x + 5) = x2 + 3x
x3 - 3x2 + 5x + 3x2 - 9x = x2 + 3x
x3 - 4x + 15 = x2 + 3x
x3 - 4x + 15 - x2 - 3x = 0
x3 - 7x + 15 - x2 = 0
(x2 - 4x + 5)(x + 3) = 0
vì x2 - 4x + 5 > 0 nên
x + 3 = 0
=> x = -3
5.(17 - 3\(x\)) + 24 = 4
5.(17 - 3\(x\)) = 4 - 24
5.(17 - 3\(x\)) = -20
(17 - 3\(x\)) = -20 : 5
17 - 3\(x\) = - 4
3\(x\) = 17 + 4
3\(x\) = 21
\(x\) = 21 : 3
\(x\) = 7
\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-2\right)xb}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a+\left(x-2\right)xb+\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{a\left(x^2-3x+2\right)+b\left(x^2-2x\right)+c\left(x^2-x\right)}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{x^2\left(a+b+c\right)-x\left(3a+2b+c\right)+2a}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
Sử dụng đồng nhất thức ta được: \(\begin{cases}x^2\left(a+b+c\right)=9\\x\left(3a+2b+c\right)=16\\2a=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=3\\c=4\end{cases}\)