K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

\(\frac{-3x+5}{2}< 1\Leftrightarrow\frac{-3x+5}{2}-1< 0\)

\(\Leftrightarrow\frac{-3x+5-2}{2}< 0\Leftrightarrow\frac{-3x+3}{2}< 0\)

\(\Rightarrow-3x+3< 0\)vì 2 > 0 

\(\Leftrightarrow-3\left(x-1\right)< 0\Leftrightarrow x-1>0\Leftrightarrow x>1\)

Vậy tập nghiệm của bất phương trình là S = { x | x > 1 }

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Leftrightarrow6x+24+9x+6< 10x-10\)

\(\Leftrightarrow5x+40< 0\)

\(\Leftrightarrow x< -8\)

Tự biểu diễn nha bạn

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Rightarrow6x+24+9x+6< 10x-10\)

\(5x< -40\)

\(\Rightarrow x< -8\)

7 tháng 4 2019

a) \(x^2-5x+6< 0\)

\(\Leftrightarrow x^2-2x-3x+6< 0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)

\(\Leftrightarrow2< x< 3\)

Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình

b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )

\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)

\(\Leftrightarrow0< x< \frac{5}{3}\)

Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình

24 tháng 4 2017

A . 3x + 2(x + 1) = 6x - 7

<=> 3x + 2x + 2 = 6x -7

<=> 5x - 6x = -7 - 2

<=> -x = -9

<=> x =9

B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)

=> 3(x +3) < 5(5 -x)

<=> 3x+9 < 25 - 5x

<=> 3x + 5x < 25 - 9

<=> 8x < 16

<=> x < 2

C . \(\frac{5}{x+1}\)\(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{x^2+x-4x-4_{ }}\)\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)\(\frac{2}{x-4}\)

<=> 5(x - 4) + 2x = 2(x +1)

<=> 5x - 20 + 2x = 2x + 2

<=>7x - 2x = 2 + 20

<=> 5x = 22

<=> x =\(\frac{22}{5}\)

18 tháng 4 2020

\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)

=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)

lại có x+1>x-2 => x-2<0 và x+1>0

=> -1<x<2

học tốt

19 tháng 4 2020

Cho mình làm lại nha:

\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)

\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)

\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)

ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2

đọc lộn xíu xin lỗi nha

học tốt

Bài 1: 

a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)

\(\Leftrightarrow6-8x-10+2x-5=0\)

\(\Leftrightarrow-6x+11=0\)

\(\Leftrightarrow-6x=-11\)

hay \(x=\dfrac{11}{6}\)

b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)

\(\Leftrightarrow6-12x-11+3x-1=0\)

\(\Leftrightarrow-9x-6=0\)

\(\Leftrightarrow-9x=6\)

hay \(x=-\dfrac{2}{3}\)

22 tháng 3 2020

a) Ta có: \(\frac{3x-5}{2}\ge5x\)

         \(\Leftrightarrow3x-5\ge10x\)

         \(\Leftrightarrow3x-10x\ge5\)

         \(\Leftrightarrow-7x\ge5\)

         \(\Leftrightarrow x\le-\frac{5}{7}\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)

b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)

       \(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)

       \(\Leftrightarrow5x< 20\)

       \(\Leftrightarrow x< 4\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)

24 tháng 3 2020

a) (3x - 5)/2 >= 5x

<=> 3x - 5 >= 10x

<=> -5 >= 10x - 3x

<=> -5 >= 7x

<=> x =< -5/7

b) x(2 + x) - x^2 + 8x < 5x + 20

<=> 2x + x^2 - x^2 + 8x < 5x + 20

<=> 10x < 5x + 20

<=> 10x - 5x < 20

<=> 5x < 20

<=> x < 4

17 tháng 7 2017

\(\frac{3x}{5}+\frac{x-1}{4}=5-\frac{3x-1}{2}\)

\(\Leftrightarrow\frac{3x.4+5\left(x-1\right)}{20}=\frac{20.5-10\left(3x-1\right)}{20}\)

\(\Rightarrow12x+5x-5=100-30x+10\)

\(\Leftrightarrow47x=115\)

\(\Leftrightarrow x=\frac{115}{47}\)

9 tháng 3 2019

Mình mới học lớp 5 (^_^)

    Sorry