Bài 1 :
Tìm số tự nhiên nhỏ nhất chia ho 6,8,9 dư 4 và chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 1:
Gọi số cần tìm là A
Nhận thấy nếu tăng A lên 2 đơn vị sẽ chia hết cho 3, 4, 5, 6.
Mà UCLN(3,4,5,6)=60 nên A=60n-2
Xét n=1, 2, 3,... ta chọn được n=10 thỏa mãn. Vậy A=60.10-2=598
Bài 2;
A= 5a+3 =7b+4=9c+5
2A=10a+6=14b+8 = 18c+10
2A-1 = 5(2a+1) =7(2b+1) =9(2c+1)
Khi đó 2A-1 chia hết cho 5,7,9
Vậy 2A-1 là BSCNN của 5;7;9 --> 2A-1 =5.7.9 =315 --> A= 158
chúc bạn học tốt!
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59