K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

gọi ước chung lớn nhất của 3x+1 và 4x+1 là d =>3x+1 chia hết d ;4x+1 chia hết d=> 4 X [3x+1] chia hết d;3 X [4x+1] chia hết d => 12x+4 chia hết d;12x+3 chia hết d=>[12x+4]-[12x+3] chia hết d => 12x+4-12x-3 chia hết d =>1chia hết d => d=1 => ucln 3x+1 ;4x+1=1 =>4x+1;3x+1 nguyên tố cùng nhau

3 tháng 12 2016

Gọi ƯCLN(3x+1;4x+1)=d (d thuộc N*)

=> 3x+1 chia hết cho d, 4x+1 chia hết cho d => 4(3x+1)-3(4x+1) chia hết cho d <=> 1 chia hết cho d mà d thuộc N* nên d=1

Vậy ƯCLN(3x+1,4x+1)=1 với mọi x thuộc N*

DD
15 tháng 11 2021

Đặt \(\left(2n+1,4n+3\right)=d\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$

$\Rightarrow d=1$

Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.

 

17 tháng 1 2016

ta có : x2-2x+3=(x2-2x+1)+2

                      =(x-1)2+2

Vì (x-1)2 chia hét cho x-1 

=> x-1 \(\varepsilon\)Ư(2)

Mà Ư(2)={-2;-1;1;2}

TA có bảng sau:

     x-1                -2                     -1                       1                      2


     x                   -1                      0                      2                      3

Vậy x \(\varepsilon\){-1;0;2;3}

25 tháng 12 2020

Gọi ƯCLN(6n + 7 ; 8n + 9) = d

=> \(\hept{\begin{cases}6n+7⋮d\\8n+9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(6n+7\right)⋮d\\3\left(8n+9\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+28⋮d\\24n+27⋮d\end{cases}}\)

=> \(\left(24n+28\right)-\left(24n+27\right)⋮d\)

=> \(1⋮d\)

=> d = 1

=> 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau

21 tháng 11 2016

n+1 và 4n+3 là 2 số nguyên tố cùng nhau khi ƯCLN (n+1;4n+3)=1

gọi ƯCLN (n+1;4n+3)=d

=>[(n+1)+(4n+3)] chia hết cho d

=>1 chia hết cho d =>d=1

=>ƯCLN(n+1;4n+3) =1

vậy n+1 và 4n+3 là 2 số nguyên tố cùng nhau

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

DD
23 tháng 10 2021

Đặt \(\left(9n+2,5n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}9n+2⋮d\\5n+1⋮d\end{cases}}\Rightarrow5\left(9n+2\right)-9\left(5n+1\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

13 tháng 9 2018

Gọi d là ước chung của 2n+1 và 3n+1

\(\Rightarrow2n+1⋮d,3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

31 tháng 12 2018

Gọi d là ước chung của 2n+1 và 3n+1

⇒2n+1⋮d,3n+1⋮d

⇒3(2n+1)−2(3n+1)⋮d

⇒6n+3−6n−2⋮d

⇒1⋮d⇒d=1.

Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.