Cho abc=1 .Tính .
P = \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a=b=c=0\Leftrightarrow S=abc=0\)
Với \(a,b,c\ne0\)
Ta có \(\dfrac{a}{1+ab}=\dfrac{b}{1+bc}=\dfrac{c}{1+ac}\Leftrightarrow\dfrac{1+ab}{a}=\dfrac{1+bc}{b}=\dfrac{1+ac}{c}\)
\(\Leftrightarrow\dfrac{1}{a}+b=\dfrac{1}{b}+c=\dfrac{1}{c}+a\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\\b-c=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab}\\c-a=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\end{matrix}\right.\)
Nhân vế theo vế ta đc \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{ab\cdot bc\cdot ca}\)
\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow\left[{}\begin{matrix}abc=1\\abc=-1\end{matrix}\right.\)
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+1}\)
Vì abc=1
\(=>M=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{ac+c+abc}=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{c\left(a+ab+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)
Vậy M=1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{ab+a+1}{ab+a+1}=1\)
Cho a;b;c là 3 số thỏa mãn: abc = 1. Tính S = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
Ta có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(=\frac{1+b+bc}{bc+b+1}\)
\(=1\)
Xét : a/ab+a+1 = a/ab+a+abc = 1/b+bc+1
c/ac+c+1 = bc/abc+bc+b = bc/bc+b+1
=> S = 1+b+bc/bc+b+1 = 1
Vậy S = 1
Tk mk nha
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ac}\)
=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc.c}+\frac{1}{1+c+ac}\)
thay abc=1 ta được:
\(\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)(cùng mẫu c+ac+1)
=\(\frac{c+ac+1}{c+ac+1}=1\)
vậy S=1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
\(P=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)
\(=\frac{1}{ab+a+1}+\frac{abc}{bc+babc+abc}+\frac{abc}{ac+c+abc}\)
\(=\frac{1}{ab+a+1}+\frac{abc}{bc\left(1+ab+a\right)}+\frac{abc}{c\left(a+1+ab\right)}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}\)
\(=\frac{ab+a+1}{ab+a+1}=1\)