3 + 32 + 33 + 34 ⋮ 4
2 + 22 + 23 + ... + 22020 + 22021 + 22022 ⋮ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)
Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
Ta có: A=12+122+123+124+...+122021+122022�=12+122+123+124+...+122021+122022
⇒2A=1+12+122+123+...+122020+122021⇒2�=1+12+122+123+...+122020+122021
⇒2A−A=(1+12+122+123+...+122020+122021)−(12+122+123+124+...+122021+122022)⇒2�-�=(1+12+122+123+...+122020+122021)-(12+122+123+124+...+122021+122022)
⇒A=1−122022<1⇒�=1-122022<1
⇒A<1 (1)⇒�<1 (1)
Lại có: B=13+14+15+1760�=13+14+15+1760
⇒B=1615⇒�=1615
⇒B=1+115>1⇒�=1+115>1
⇒B>1 (2)⇒�>1 (2)
Từ (1)(1) và (2)⇒A<B(2)⇒�<�
Vậy A<B
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!
a) Đặt A = 2.11 + 2.13 + ... + 2.29
= 2.(11 + 13 + 15 + ... + 29)
Đặt B = 11 + 13 + 15 + ... + 29
Số số hạng của B:
(29 - 11) : 2 + 1 = 10 (số)
A = 2.(29 + 11) . 10 : 2
= 40.10
= 400
b) (2²⁰²² + 2²⁰²¹- 2²⁰²⁰) : (2²⁰¹⁹ . 2)
= 2²⁰²⁰.(2² + 2 - 1) : 2²⁰²⁰
= 4 + 2 - 1
= 5
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)
\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)
Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)
\(3+3^2+3^3+3^4\)
\(=3\left(1+3+3^2+3^3\right)\)
\(=3\cdot40\)
\(=3\cdot10\cdot4⋮4\left(dpcm\right)\)
\(2+2^2+2^3+....+2^{2022}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2021}+2^{2022}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2021}\left(1+2\right)\)
\(=2\cdot3+2^3\cdot3+...+2^{2021}\cdot3\)
\(=3\left(2+2^3+...+2^{2011}\right)⋮3\left(dpcm\right)\)