K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có: AH + HD = AD

CG + GB = CB

Mà AD = CB ( vì ABCD là hình bình hành).

DH = GB ( giả thiết)

Suy ra: AH = CG.

Xét ∆ AEH và  ∆ CFG:

AE = CF (gt)

∠ A = ∠ C (tính chất hình bình hành)

AH = CG ( chứng minh trên).

Do đó:  ∆ AEH =  ∆ CFG (c.g.c)

⇒ EH = FG

Xét  ∆ BEG và  ∆ DFH, ta có:

BG = DH (gt)

∠ B =  ∠ D (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )

Do đó:  ∆ BEG =  ∆ DFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)

a: Xét ΔHDC có 

N là trung điểm của HD

M là trung điểm của HC

Do đó: NM là đường trung bình của ΔHDC

Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)

mà AB//DC và \(AB=\dfrac{CD}{2}\)

nên NM//AB và NM=AB

b: Xét tứ giác ABMN có 

AB//NM

AB=NM

Do đó: ABMN là hình bình hành

27 tháng 9 2018
26 tháng 9 2021

a,  Ta có tam giác ABC cân tại A  có

AM là đg trung tuyến đồng thời là đg cao

Xét tứ giác ANCM có

D là trung điểm của AC ( gt)

D là trung điểm của MN ( N đối xứng M qua D-gt)

=> ANCM là hình bình hành

mà có góc AMC = 90 độ ( AM là đg cao-cmt)

=> ANCM là hình chữ nhật

26 tháng 9 2021

b, Ta có AMCN là hình chữ nhật (cmt)

=> MN = AC ; NA = MC

Ta có 

AB = AC ( tam giác ABC là tam giác cân -gt)

mà MN = AC (cmt)

=> AB = MN

Lại có MC = MB ( AM là trung tuyến -gt)

mà MC = AN ( cmt)

=> MB = AN

Xét tứ giác ANBM có

MN = AB (cmt)

NA = MB ( cmt)

=> NABM là hình bình hành (dhnb)

 

21 tháng 12 2023

a: Ta có: BC=DA(BADC là hình bình hành)

\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)

\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)

Do đó: MB=MC=NA=ND

Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

b: Hình bình hành ABMN có BA=BM(=BC/2)

nên ABMN là hình thoi

c: Ta có: MB//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

mà \(\widehat{EAD}=60^0\)

nên \(\widehat{EBM}=60^0\)

Ta có: BA=BE

BA=BM(=BC/2)

Do đó: BE=BM

Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét tứ giác ANME có NM//AE(ABMN là hình thoi)

nên ANME là hình thang

Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)

nên ANME là hình thang cân

=>AM=NE

21 tháng 12 2021

\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao

Vì D là trung điểm AC và MN nên AMCN là hình bình hành

Mà \(AM\bot BC\Rightarrow AM\bot MC\)

Do đó: AMCN là hình chữ nhật

\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)

Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)

Vậy ABMN là hình bình hành

\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)

Áp dụng PTG vào tam giác ABM vuông M

\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)

Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)

21 tháng 12 2021

a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.

Xét tứ giác AMCN có:

+ D là trung điểm của MN (N đối xứng với M qua D).

+ D là trung điểm của AC (gt).

\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).

Lại có:  \(\widehat{AMC}\) = 90o (cmt).

 \(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).

b) Tứ giác AMCN là hình chữ nhật (cmt).

\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).

\(\Rightarrow\) AN // BM.

Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.

\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.

Mà AN = MC (Tứ giác AMCN là hình chữ nhật).

\(\Rightarrow\) BM = MC = AN.

Xét tứ giác ABMN có:

+ BM = AN (cmt).

+ BM // AN (cmt).

\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).

c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).

Xét tam giác AMB vuông tại M có:

AB2 = AM2 + BM2 (Định lý Pytago).

Thay số: 52 = AM2 + 32.

\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).

Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

16 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và BD, ta có:

OB = OE + EB và OD = OF+ FD (1)

Lại có: EB = FD (giả thiết) (2)

OB = OD ( tính chất hình bình hành). (3)

Từ (1), (2),(3) suy ra: OE = OF

Suy ra tứ giác AECF là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AE // CF.