tam giác ABC vuông tại A đường cao AH,AB=4cm,AC=6cm. tínhBC,AH,BH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)
và \(BC=12,5\left(cm\right)\)
\(b,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
dùng hệ thức lương trong tam giác vuông ta có:
AB^2=BH.BC=BH.(BH+CH)
16=BH^2+6BH
BH=2cm
Áp dụng Pitago:
\(BC=\sqrt{AB^2+AC^2}=2\sqrt{13}\) (cm)
Áp dụng hệ thức lượng:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12\sqrt{13}}{13}\) (cm)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{8\sqrt{13}}{13}\) (cm)
\(CH=BC-BH=\dfrac{18\sqrt{13}}{13}\) (cm)
Áp dụng định lý Pythagoras vào tam giác vuông ABC, ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+6^2}=2\sqrt{13}\)
Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4^2}{2\sqrt{13}}=\dfrac{8\sqrt{13}}{13}\)
\(\Rightarrow HC=BC-BH=2\sqrt{13}-\dfrac{8\sqrt{13}}{13}=\dfrac{18\sqrt{13}}{13}\)
\(AH^2=BH.CH=\dfrac{8\sqrt{13}}{13}.\dfrac{18\sqrt{13}}{13}=\dfrac{144}{13}\)
\(\Rightarrow AH=\sqrt{\dfrac{144}{13}}=\dfrac{12\sqrt{13}}{13}\)