K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Ta có: \(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x-abc\)

Đây là hai đa thức bậc 3 nên chia hết cũng có nghĩa là trùng nhau từ đó ta có

\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b+c=0\left(1\right)\\ab+bc+ca-b=0\left(2\right)\\c\left(ba-1\right)=0\left(3\right)\end{cases}}\)

Xét (3) ta có \(\orbr{\begin{cases}c=0\\ab=1\end{cases}}\)

Với c = 0 thì b = 0; a tùy ý

Với ab = 1 thì \(\hept{\begin{cases}a=-1\\b=-1\\c=1\end{cases}}\)

30 tháng 11 2017

P (1) = a + b+ c = 0 => a +b = -c (1)
P(-1) = 6 => a - b + c = 6 => a - b = 6 -c (2)
LẤy (1) - (2) = > a + b - a + b = - c - 6 +c => 2b = - 6 => b = - 3
LẤy (1) + (2) ta có: a + b + a - b = -c + 6 - c => 2a = 6 - 2c => a = 3-c
P (-2) = 4a - 2b + c = 4 (3-c) - 2. -3 + c = 3 => 12 - 4c + 6 + c = 3 => 18 -3c = 3 => 3c = 15 => c = 5
a = 3 -c = 3-5 = -2
Vậy a =-2 ; b =-3 ; c= 5

k cho mk nha

10 tháng 11 2017

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...