tìm Max của 9-|x-5|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)
\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)
\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)
\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng bất đẳng thức Bunhia ta có :
\(\left(x+4y\right)^2\le\left(5^2+12^2\right)\left(\frac{x^2}{25}+\frac{y^2}{9}\right)=169\)
Vậy \(-13\le x+4y\le13\Rightarrow-8\le P\le18\)
vậy min bằng -8
max bằng 18
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A\le\sqrt{\left(4^2+7^2\right)\left(x-5+9-x\right)}=2\sqrt{65}\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{x-5}}{4}=\dfrac{\sqrt{9-x}}{7}\Rightarrow x=\dfrac{389}{65}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có M2 = 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16
=> M <= 4 đạt GTLN tại x = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\sqrt{9-x^2}\le\frac{x^2+9-x^2}{2}=\frac{9}{2}\)
Đạt được khi
\(x^2=9-x^2\Leftrightarrow x^2=\frac{9}{2}\)
9 - |x -5 | Max
<=> |x - 5| Min
Mà |x - 5| \(\ge\) 0 => |x - 5| = 0
<=> x - 5 = 0
=> x = 5
Vậy Max của 9 - |x - 5| = 9 - 0 = 9