1+2+3+4+...+x=210
giúp mik giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 210 ) + ( x + 211 ) = 23632
x + 1 + x + 2 + x +3 + .... + x + 210 + x + 211 = 23632
( x + x + x + .... + x ) + ( 1 + 2 + 3 + ... + 210 + 211 ) = 23632
211x + 22366 = 23632
211x = 23632 - 22366
211x = 1266
=> x = 1266 : 211 = 6
Vậy x = 6
ta có (x+1) + (x+2) + (x+3) + ... + (x+210) + (x+211) = 23632
= X + ( 1 + 2 +3 + 4 + .... + 210 + 211 ) = 23632
= X + ( 1 + 211 ) + ( 2 + 210 ) + .... =23632
= X + 212 x 105 =23632
= X + 22260 = 23632
= X = 23632 - 22260
= X = 1372
a) x + (x + 1) + (x + 2) + ..... + (x + 30) = 1240
31x + (1 + 2 + 3 + ..... + 30) = 1240
31x + 465 = 1240
31x = 775
=> x = 25
b) 1 + 2 + 3 + ..... + x = 210
Áp dụng công thức tính tổng dãy số , ta có :
\(\frac{\left[\left(x-1\right):1+1\right].\left(x+1\right)}{2}=\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
<=> x(x + 1) = 20.21
=> x = 20
\(x\) \(\times\) \(\dfrac{1}{2}\) = 1 - \(\dfrac{1}{3}\)
\(x\) \(\times\)\(\dfrac{1}{2}\) = \(\dfrac{2}{3}\)
\(x\) = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{3}\)
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
\(a,\left(\dfrac{31}{35}-\dfrac{4}{7}\right)\times\dfrac{8}{7}:2\\ =\left(\dfrac{31}{35}-\dfrac{4\times5}{35}\right)\times\dfrac{8}{7}:2\\ =\dfrac{11}{35}\times\dfrac{8}{7}:2\\ =\dfrac{88}{245}:2\\ =\dfrac{44}{245}\\ b,\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\left(\dfrac{2-1}{2}\right)\times\left(\dfrac{3-1}{3}\right)\times\left(\dfrac{4-1}{4}\right)\times\left(\dfrac{5-1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
a, ( \(\dfrac{31}{35}\) - \(\dfrac{4}{7}\)) \(\times\) \(\dfrac{8}{7}\): 2
= \(\left(\dfrac{31}{35}-\dfrac{20}{35}\right)\) \(\times\) \(\dfrac{8}{7}\) : 2
= \(\dfrac{11}{35}\) \(\times\) \(\dfrac{8}{7}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{44}{35}\) \(\times\) \(\dfrac{4}{7}\)
= \(\dfrac{44}{245}\)
b, ( 1 - \(\dfrac{1}{2}\)) \(\times\) ( 1 - \(\dfrac{1}{3}\)) \(\times\) ( 1 - \(\dfrac{1}{4}\)) \(\times\) ( 1 - \(\dfrac{1}{5}\))
= \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{4}{5}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{2\times3\times4}{2\times3\times4}\)
= \(\dfrac{1}{5}\)
\(\dfrac{x^2+x+1}{x^2-x+1}-\dfrac{1}{3}=\dfrac{3x^2+3x+3-x^2+x-1}{3\left(x^2-x+1\right)}\)
\(=\dfrac{2x^2+4x+2}{3\left(x^2-x+1\right)}=\dfrac{2\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge0\)
Do đó: \(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\)(1)
\(\dfrac{x^2+x+1}{x^2-x+1}-3=\dfrac{x^2+x+1-3x^2+3x-3}{x^2-x+1}\)
\(=\dfrac{-2x^2+4x-2}{x^2-x+1}=\dfrac{-2\left(x-1\right)^2}{x^2-x+1}\le0\)
Do đó: \(\dfrac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ (1)và (2) suy ra ĐPCM
\(\dfrac{2}{5}+\dfrac{1}{3}=\dfrac{6+5}{15}=\dfrac{11}{15}\)
\(\dfrac{16}{24}+\dfrac{1}{3}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
\(\dfrac{7}{12}+\dfrac{4}{6}+\dfrac{3}{8}=\dfrac{14}{24}+\dfrac{16}{24}+\dfrac{9}{24}=\dfrac{39}{24}=\dfrac{13}{8}\)
\(1+\dfrac{1}{12}=\dfrac{12+1}{12}=\dfrac{13}{12}\)
Dãy trên có: (x-1):1+1 = x (số hạng)
⇒\(\dfrac{\left(x+1\right)x}{2}\) = 210 ⇔x (x+1) = 420 = 20 nhân 21
Suy ra: x = 20