Rút gọn phép tính sau
\(1+2+2^2+2^3+.....+2^9\)
mọi người giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=25x^4-10x^3+5x^2\)
c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)
Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)
Rút gọn:
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)
Vậy A=-3x/x+3 với x khác 3 và x khác -3
b) |x-2|=1
Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)
* x-2=1=> x=1+2=>x=3 (o t/m)
*x-2=-1=>x=-1+2=>x=1 (tm)
Thay x=1 vào phân thức A rút gọn ta có:
\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)
Vậy A=-3/4 khi x=1
c) Để A có gt nguyên => A thuộc Z
=> \(A=\frac{-3x}{x+3}\in Z\)
Ta có: -3x chia hết x+3
=> -3(x-3)-9 chia hết x+3
=> -9 chia hết cho x+3
=> x+3 thược Ư(-9)={1;-1;9;-9;3;-3)
Lập bảng thay vào hoặc o cần cx được
x+3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | -2(tm) | -4(tm) | 6(tm) | -12(tm) | 0(tm) | -6(tm) |
Vậy...
a)(x-3)(x+3)-(x+5)2+(x+1)(x+2)
=x2-9-x-10x-25+x2+2x+x+2
=2x2-8x-32
b)2 . 25 - 8 . 5 - 32=78
\(M=1-2+2^2-2^3+2^4-2^5+...+2^{98}-2^{99}\)
\(=1-\left(2-2^2\right)-\left(2^3-2^4\right)-...-\left(2^{98}-2^{99}\right)\)
\(=1-2\left(1-2\right)-2^2\left(1-2\right)-...-2^{98}\left(1-2\right)\)
\(=1+2+2^2+...+2^{98}\)
\(2M=2+2^2+2^3+...+2^{99}\)
\(2M-M=\left(2+2^2+2^3+...+2^{99}\right)-\left(1+2+2^2+...+2^{98}\right)\)
\(M=2^{99}-1\)
\(m=\dfrac{2^7\cdot3^5+2^4\cdot3^9}{2^6\cdot3^5+2^3\cdot3^9}\)
\(m=\dfrac{2^4\cdot3^5\cdot\left(2^3+3^4\right)}{2^3\cdot3^5\cdot\left(2^3+3^4\right)}\)
\(m=\dfrac{2^4\cdot3^5}{2^3\cdot3^5}\)
\(m=\dfrac{2^4}{2^3}\)
\(m=2^{4-3}\)
\(m=2\)
\(\frac{3\left(x-2\right)}{4}\div\frac{2-x}{2}=\frac{3\left(x-2\right)}{4}\times\frac{-2}{x-2}=\frac{-3}{2}\)
học tốt
Rút gọn nhé !
\(\frac{3}{4}.\left(x-2\right):\frac{1}{2}.\left(2-x\right)=\frac{3x-6}{4}.2.\left(2-x\right)\)
\(=\frac{3x-6}{4}.\left(4-2x\right)=\frac{\left(3x-6\right).\left(4-2x\right)}{4}\)
\(=\frac{\left(12x-24\right)-\left(6x^2+12x\right)}{4}=\frac{-24-6x^2}{4}\)
\(=\frac{-12-3x^2}{2}=\frac{-3.\left(4+x^2\right)}{2}\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a,\(ĐKXĐ:x\ne0;x\ne3;x\ne1\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}=\left(\frac{9}{x\left(x-3\right)}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3\left(1-x\right)}\)
\(=\left(\frac{9+\left(x-2\right)\left(x-3\right)-x.x}{x\left(x-3\right)}\right).\frac{x}{3\left(1-x\right)}=\frac{9+x^2-5x+6-x^2}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}\)
\(=\frac{-5x+15}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=\frac{-5\left(x-3\right)}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=-\frac{5}{3\left(1-x\right)}\)
b, \(x=\frac{1}{2}\)
\(\Rightarrow P=-\frac{5}{3\left(1-\frac{1}{2}\right)}=-\frac{5}{3.\frac{1}{2}}=-5:\frac{3}{2}=-\frac{10}{3}\)
c, Để \(P\in z\)thì \(3\left(1-x\right)\inƯ\left(5\right)=\left(-5;-1;1;5\right)\)
\(3\left(1-x\right)=-5\Rightarrow1-x=-\frac{5}{3}\Rightarrow x=\frac{8}{3}\)
\(3\left(1-x\right)=-1\Rightarrow1-x=-\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
\(3\left(1-x\right)=1\Rightarrow1-x=\frac{1}{3}\Rightarrow x=\frac{2}{3}\)
\(3\left(1-x\right)=5\Rightarrow1-x=\frac{5}{3}\Rightarrow x=-\frac{2}{3}\)
= \(\dfrac{1}{9}\cdot x^2\cdot y^3\cdot z\cdot27\cdot y\cdot z^7=3\cdot x^2\cdot y^4\cdot z^8\)
Ta có: \(-\dfrac{1}{9}x^2y^3z\cdot\left(-27yz^7\right)\)
\(=\left[\left(-\dfrac{1}{9}\right)\cdot\left(-27\right)\right]\cdot x^2\cdot\left(y^3\cdot y\right)\cdot\left(z\cdot z^7\right)\)
\(=3x^2y^4z^8\)
\(\frac{3}{\sqrt{7}-1}+\frac{3}{\sqrt{7}+1}=\frac{3\left[\sqrt{7}+1+\sqrt{7}-1\right]}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}=\frac{6\sqrt{7}}{6}=\sqrt{7}\)
\(\frac{3}{\sqrt{X}-1}-\frac{2}{\sqrt{X}+1}+\frac{X-7}{X-1}=\frac{3\left(\sqrt{X}+1\right)-2\left(\sqrt{X}-1\right)+X-7}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{X+\sqrt{X}-2}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{\sqrt{X}+2}{\sqrt{X}+1}\)
TÍNH GIÁ TRỊ BIỂU THỨC:
\(\frac{3}{\sqrt{7}-1}\) + \(\frac{3}{\sqrt{7}+1}\)= \(\frac{3\left(\sqrt{7}+1\right)+3\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)= \(\frac{3\sqrt{7}+3+3\sqrt{7}-3}{6}\)=\(\frac{6\sqrt{7}}{6}\)=\(\sqrt{7}\)
RÚT GỌN BIỂU THỨC:
\(\frac{3}{\sqrt{X}-1}\)-\(\frac{2}{\sqrt{X}+1}\)+\(\frac{X-7}{X-1}\)
= \(\frac{3\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)-\(\frac{2\left(\sqrt{X}-1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)+\(\frac{X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{3\sqrt{X}+3-2\sqrt{X}+2+X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{X+\sqrt{X}-2}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{\left(\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{\sqrt{X}-2}{\sqrt{X}-1}\)
CHÚC EM HỌC TỐT!
A = 1 + 2 + 22 + 23+......+29
2A = 2+ 22 + 23 +.......+29 + 210
2A - A = 210 -1
A = 210 - 1
11+12+123=123553444