Chứng tỏ rằng số M = 0,8.( 1983 1983 - 19171917) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=0,3.\left(1983^{1980}-1917^{1916}\right)\) ( Sửa đề : Đề sai rồi )
Ta thấy \(1983^{1980}\) tận cùng là 1
\(1917^{1916}\) tận cùng là 1
Don đó \(\left(1983^{1980}-1917^{1916}\right)\) tận cùng 0
Do đó \(0,3.\left(1983^{1980}-1917^{1917}\right)\) nguyên
Do đó A là số nguyên ( đpcm )
\(A=0,3.\left(1983^{1983}-1917^{1917}\right)=\frac{3\left(1983^{1983}-1917^{1917}\right)}{10}\)
Để A nguyên thì \(\left(1983^{1983}-1917^{1917}\right)⋮10\)
rồi bạn xét chữ số tận cùng của 19831983 và 19171917 , chúng sẽ đều có tận cùng là 7, trừ cho nhau có tận cùng là 0
suy ra nó chia hết cho 10
một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường
giải hộ mình nha
Ta có: 19831983=19833.19831980=19833.(19834)495=(....7).(.....1)495 => Có tận cùng là 7
19171917=1917.19171916=1917.(19174)479=1917.(....1)479 => Có tận cùng là 7
=> 19831983-19171917 = (....7)-(....7) =....0 => Có tận cùng là 0
Như vậy, 0,3.(19831983-19171917) sẽ là số nguyên.
\(0.3\left(1983^{1983}+1917^{1917}\right)\)
\(=0\)
Vậy kết quả của phép tính trên là 1 số nguyên
Muốn chứng tỏ 0,3 * (1983^1983 – 19171917) là số nguyên ta hãy chứng tỏ biểu thức 1983^1983 – 1917^1917 chia hết cho 10, hay nói cách khác biểu thức đó có kết quả là một số có chữ số tận cùng là 0.
Nhận thấy: 19834 có chữ số tận cùng bằng 1
19833 có chữ số tận cùng bằng 7
Nên 19831983 = (19834)495 * 19833 = 1983(4 * 495) + 3 có chữ số tận cùng là 7.
Nhận thấy 19174 có chữ số tận cùng bằng 1
Nên 19171917 = (19174)479 * 1917 có chữ số tận cùng là 7.
Do đó, hiệu số của biểu thức (19831983 – 19171917) sẽ có chữ số tận cùng là 0.
Vậy đáp số của phép tính 0,3 * (19831983 – 19171917) là số nguyên.
Lưu ý: Bài toán này có thể dùng nhị thức Newton để chứng minh đáp số của biểu thức
ctv olm có mặt
đây là câu tương tự trong đề thi học sinh giỏi cấp huyện mà hs của mình từng thi chỉ khác số
M = 0,8 (19831983 - 19171917) là số nguyên
đặt A = 19831983 - 19171917 ⇔ M = 0,8 . A
ta có A = (19834)495 . 19833 - (19174)479. 1917
A = ( \(\overline{....1}\))495. \(\overline{....7}\) - \(\overline{....1}\). 1917
A = \(\overline{....7}\) - \(\overline{....7}\)
A = \(\overline{.....0}\) = B . 10 (B ϵ Z)
⇔ M = B.10.0,8 = B . 8 ⇔ M ϵ Z (vì B ϵ Z)
⇔ M là một số nguyên điều phải chứng minh