Tìm x: 4x^2(x-5)-(5-x)^2 =0
Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow x^2+4x+25-x^2=3\\ \Rightarrow4x=-22\Rightarrow x=-\dfrac{11}{2}\\ b,\Rightarrow\left(2x-3-4x-3\right)\left(2x-3+4x+3\right)=0\\ \Rightarrow6x\left(-2x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
\(---\)
\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(---\)
\(c,4x(x-2)-x(3+4x)(?)\)
\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)
\(---\)
\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
\(---\)
\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(Toru\)
vi (x-5)^2=(5-x)^2
nen 4x^2(x-5)-(5-x)^2=(x-5).(4x^2-x+5)=0
nen x-5=0 hoac 4x^2-x+5=0
neu x-5=0thix=5
neu 4x^2-x+5=0 thi x(4x-1)=-5
cau tu lam not nhye ]
k cho to nha
T bt làm r nhưng đag vướng cái đoạn x(4x-1) =-5 í làm kiểu j -.-
1) \(2x\cdot\left(x-3\right)-5=3x\left(2x-5\right)-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=6x^2-15x-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=2x^2-15x+40\)
\(\Leftrightarrow2x^2-6x-5-2x^2+15x-40=0\)
\(\Leftrightarrow9x-45=0\)
<=> x=5
2) x(2x-1)-5(-7)2=2x2-2x+5
<=> 2x2-x-5.49=2x2-2x+5
<=> 2x2-x-245-2x2+2x-5=0
<=> x-250=0
<=> x=250
3) |a-2|=10
\(\Leftrightarrow\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-8\end{cases}}}\)
4) |x|=-5
=> Không tồn tại giá trị của x thỏa mãn vì |x| >=0 với mọi x thuộc Z
a) Ta có: \(8x\left(2x-3\right)-4x\left(4x+3\right)=72\)
\(\Leftrightarrow16x^2-24x-16x^2-12x=72\)
\(\Leftrightarrow-36x=72\)
hay x=-2
b) Ta có: \(\left(x+2\right)\left(x+4\right)-x\left(x+2\right)=104\)
\(\Leftrightarrow x^2+6x+8-x^2-2x=104\)
\(\Leftrightarrow4x=96\)
hay x=24
c) Ta có: \(\left(x-1\right)\left(x+4\right)-x\left(x-1\right)=308\)
\(\Leftrightarrow x^2+3x-4-x^2+x=308\)
\(\Leftrightarrow4x=312\)
hay x=78
d) Ta có: \(15x\left(2x-3\right)-\left(5x+2\right)\left(6x-5\right)=-22\)
\(\Leftrightarrow30x^2-45x-30x^2+25x-12x+10=-22\)
\(\Leftrightarrow-32x=-32\)
hay x=1
a: \(3x\left(x-3\right)+4x-12=0\)
=>\(3x\left(x-3\right)+\left(4x-12\right)=0\)
=>\(3x\left(x-3\right)+4\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(3x+4\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: Sửa đề:\(\left(x+1\right)\left(x^2-x+1\right)-x^3+2x=17\)
\(\Leftrightarrow x^3+1-x^3+2x=17\)
=>2x+1=17
=>2x=17-1=16
=>\(x=\dfrac{16}{2}=8\)
c: \(\left(x-3\right)\left(x+5\right)+\left(x-1\right)^2-6x^4y^2:3x^2y^2=15x\)
=>\(x^2+2x-15+x^2-2x+1-2x^2=15x\)
=>\(15x=-14\)
=>\(x=-\dfrac{14}{15}\)
a: \(\dfrac{x}{6}=\dfrac{8}{3}\)
=>\(x=6\cdot\dfrac{8}{3}=\dfrac{6}{3}\cdot8=8\cdot2=16\)
b: \(\dfrac{5}{x}=\dfrac{4}{9}\)
=>\(x=\dfrac{5\cdot9}{4}=\dfrac{45}{4}\)
c: \(\dfrac{x+3}{-4}=\dfrac{5}{20}\)
=>\(x+3=\dfrac{-4\cdot5}{20}=-1\)
=>x=-1-3=-4
d: \(\dfrac{7}{3+4x}=\dfrac{-2}{9}\)
=>\(4x+3=\dfrac{9\cdot7}{-2}=-\dfrac{63}{2}\)
=>\(4x=-\dfrac{63}{2}-3=-\dfrac{69}{2}\)
=>\(x=-\dfrac{69}{8}\)
f: ĐKXĐ: x<>1
\(\dfrac{3}{x-1}=\dfrac{x-1}{27}\)
=>\(\left(x-1\right)^2=3\cdot27=81\)
=>\(\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(nhận\right)\end{matrix}\right.\)