x^3-18x+27=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+1 + 2x.3x - 18x - 27 = 0
=> 3x.3 + 2x.3x - (18x + 27) = 0
=> 3x.(3 + 2x) - 9.(2x + 3) = 0
=> (2x + 3).(3x - 9) = 0
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\3^x-9=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=-3\\3^x=9\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=2\end{cases}}\)
Vậy ...
<=> 3x(2x+3)-9(2x+3)=0
<=> (2x+3)(3x-9)=0
<=> 2x+3=0 => x=-3/2
Và: 3x-9=0 => 3x=9=32 => x=2
Đs: x=-3/2 và x=2
\(3^{x+1}+2x.3^x-18x-27=0\)
\(\Leftrightarrow3^x\left(2x+3\right)-9\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3^x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3^x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=2\end{matrix}\right.\)
Vậy ...............
\(3^{x+1}+2x+3^x-18x-27=0\)
<=> \(3^x\left(3+2x\right)-9\left(2x+3\right)=0\)
<=> \(\left(2x+3\right)\left(3^x-9\right)=0\)
<=>\(\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
vậy.......
3x + 1 + 2x .3x - 18x - 27 = 0
<=> 3x ( 3 + 2x ) - 9 ( 2x + 3 ) = 0
<=> ( 3x - 9 ) ( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}3^x-9=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}3^x=9\\2x=-3\end{cases}}\)
<=>\(\orbr{\begin{cases}3^x=3^2\\x=-\frac{3}{2}\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
3x+1+2X.3x-18x+27=0
<=> 3x(3+2x)-9(3+2x)=0
<=> (3+2x)(3x-9)=0
\(\Leftrightarrow\orbr{\begin{cases}3+2x=0\\3^x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1,5\\x=2\end{cases}}\)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
Lớp 9 thì bạn dùng phương pháp nhẩm nghiệm được nhé
\(Ư\left(27\right)=\left\{\pm1;\pm3;...\right\}\) thay vào thử nghiệm nhé
lời giải : \(x^3-18x+27=0\Leftrightarrow x^3-3x^2+3x^2-9x-9x+27=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x-9\right)=0\)
TH1 : \(x=3\)
TH2 : Ta có : \(9+36=45\)>0
Vì delta > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-3-\sqrt{45}}{2};x_2=\dfrac{-3+\sqrt{45}}{2}\)
Vậy tập nghiệm của phương trình là S = \(\left\{3;\dfrac{-3\pm\sqrt{45}}{2}\right\}\)