Tìm x:
a) \(^{4^x}\)= 64
b) \(2^x\)= 16
c) \(9^{n-1}\)=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow x^2-36=64\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow x=\pm10\)
Vậy \(x=\pm10\)
b) \(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{1;3\right\}\)
Bài 1: Tìm \(x\)
a; \(x-2\) + 7 = 1.3.(-9)
\(x\) - 2 + 7 = 3.(-9)
\(x\) - 2 + 7 = - 27
\(x\) = - 27 - 7 + 2
\(x\) = - 34 + 2
\(x\) = - 32
Vậy \(x=-32\)
Bài 1
c; - 2\(x\) + 5 = 7
- 2\(x\) = 7 - 5
- 2\(x\) = - 2
\(x\) = -2 : (-2)
\(x\) = - 1
Vậy \(x\) = - 1
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
\(a,\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\\ \Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\\ \Leftrightarrow2\left(x-3\right)=0\\ \Leftrightarrow x=3\)
\(b,4x^2-9=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,x^2+6x+9=0\\ \Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)
a. \(\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\)
\(\Leftrightarrow2\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
4x=64
4x=43
=>x=3
2x=16
2x=24
=>x=4
9n-1=9
9n-1=91
=>n-1=1
n=1+1
n=2
a ) 4 x = 64
4 x = 4 3
=> x = 3
b ) 2 x = 16
2 x = 2 4
=> x = 4
c ) 9 n - 1 = 9
9 n - 1 = 9 1
=> n - 1 = 1
n = 2