Tìm a biết rằng: (1999 + \(\overline{19a8}\))⋮1997
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD:(a+b)ⁿ=B(a)+bⁿ với B(a) là 1 bội nào đó của a
♣999993^1999
=(999995-2)^1999
=B(5)-2^1999
♣555557^1997
=(555555+2)^1997
=B(5)+2^1997
=>999993^1999-555557^1997
=B(5)-2^1997(2²+1)
=B(5)-2^1997.5 chia hết cho 5
Cho mình cái like đó để mình còn có hứng giải tiếp :
1. a. Mọi 574n đều có tận cùng là 1. Vậy 571999=574.499+3=574.499.573=(.....1).(.....3)
= ......3. Có tận cùng là 3
b.Mọi 934n đều có tận cùng là 1. Tương tự câu a.
2.
Mọi 9999934n đều có tận cùng là 1.Mọi 5555574n đều có tận cùng là 1.Vậy 9999931999-5555531997=(......1).(.....3)-(......1).(.......3)=0. Có tận cùng là 0 nên chia hết cho5
a - 3
b - 7
A= 999993^1999 - 55555^1997
= ............7 - .............5
==> A CHIA HẾT CHO 5
tìm các chữ số tận cùng của hai số trên ta có :
A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)
Ta có: \(A=999993^{1999}-555557^{1997}\)
\(=999993^{1998}.999993-555557^{1996}.555557\)
\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)
\(=\left(...9\right).999993-\left(...1\right).555557\)
\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)
Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).
\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)
Cho \(A=999993^{1999}-555557^{1997}\)
Vì \(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)
Vì \(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)
Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)
\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)
Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số.
Ta có :
\(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)
\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)
Vậy A có chữ số tận cùng là 0 nên A chia hết cho 5
Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5
Ta có: (1) 9999931999=(9999934)499. 9999933
Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1
9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)
(2) 5555571997= (5555574)499 .7
Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7
Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5
⇔ 1999 + \(\overline{19a8}\) ⋮ 1997
⇔ 1999 + 1908 + 10a ⋮ 1997
⇔ 1997 + 2+ 1997 - 89 + 10a ⋮ 1997
⇔ 10a - 87 ⋮ 1997
vì là chữ số thuộc hàng chục nên 0 ≤ a ≤ 9
⇔ -87 ≤ 10a - 87 ≤ 10x 9 - 87 = 3
vậy 10a - 87 không chia hết cho 1997
⇔ 1999 + \(\overline{19a8}\) không chia hết cho 1997 với mọi a ϵ {0;1;2;3;4;5;6;7;8;9}
hay không có giá trị nào của a thỏa mãn đề bài