K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)

\(\Leftrightarrow3x=12\)

hay x=4

4 tháng 9 2021

a) 2x3-18x=0

⇔ 2x(x2-9)=0

⇔ 2x(x-3)(x+3)=0

⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b)(3x-1)(2x+1)-6x(x+2)=11

 

⇔ 6x2+x-1-6x2-12x=11

⇔ -11x=12

\(\Leftrightarrow x=-\dfrac{12}{11}\)

c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)

⇔ x3-3x2+3x-1-x3-8-3+3x2=0

⇔ 3x=12

⇔   x=4

b: 4x^2-20x+25=(x-3)^2

=>(2x-5)^2=(x-3)^2

=>(2x-5)^2-(x-3)^2=0

=>(2x-5-x+3)(2x-5+x-3)=0

=>(3x-8)(x-2)=0

=>x=8/3 hoặc x=2

c: x+x^2-x^3-x^4=0

=>x(x+1)-x^3(x+1)=0

=>(x+1)(x-x^3)=0

=>(x^3-x)(x+1)=0

=>x(x-1)(x+1)^2=0

=>\(x\in\left\{0;1;-1\right\}\)

d: 2x^3+3x^2+2x+3=0

=>x^2(2x+3)+(2x+3)=0

=>(2x+3)(x^2+1)=0

=>2x+3=0

=>x=-3/2

a: =>x^2(5x-7)-3(5x-7)=0

=>(5x-7)(x^2-3)=0

=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)

24 tháng 10 2021

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

11 tháng 10 2021

a: ta có: \(x^2+3x-\left(2x+6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

b: Ta có: \(5x+20-x^2-4x=0\)

\(\Leftrightarrow\left(x+4\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)

a: Ta có: \(2x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

29 tháng 8 2017

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t =   x 2   +   5 x   +   2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 − 4 − 12 = 0 ⇔ t 2 − 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔   x 2   + 5 x   –   2   =   0   ( * * )

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và  ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

24 tháng 7 2018

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t = x 2 + 5 x + 2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 - 4 - 12 = 0 ⇔ t 2 - 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔ x2 +5x – 2 = 0 (**)

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và    ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 6 2021

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4+x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{23}{4}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(N\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{-2\right\}\)

b) \(9x^2-4-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(3x-2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2-3x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\cdot4=0\)

\(\Leftrightarrow3x-2=0\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(S=\left\{\dfrac{2}{3}\right\}\)