cmr a /m <a+b/2m <b/m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: (x+a)(x+b)
\(=x^2+bx+ax+ab\)
\(=x^2+ab+x\left(a+b\right)\)
\(=x^2+ab\)
Bài 2:
Ta có: \(\left(x-m\right)\left(x+n\right)\)
\(=x^2+nx-mx-nm\)
\(=x^2-nm+x\left(n-m\right)\)
\(=x^2-mn\)
1. Ta có với \(a+b=0\) thì
\(VP=\left(x+a\right)\left(x+b\right)\) \(=x^2+ax+bx+ab\)\(=x\left(a+b\right)+x^2+ab\)\(=x^2+ab\)
Mặt khác, \(VT=x^2+ab\)
\(\Rightarrow VP=VT\) ( đpcm )
2. Tương tự bài 1
Ta có với \(m-n=0\) thì
\(VP=\left(x-m\right)\left(x+n\right)=x^2-mx+nx-mn=-x\left(m-n\right)+x^2-mn=x^2-mn\)
Mặt khác, \(VT=x^2-mn\)
\(\Rightarrow VP=VT\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì a = b => \(\hept{\begin{cases}\frac{a}{b}=1\\a+m=b+m\Rightarrow\frac{a+m}{b+m}=1\end{cases}}\)
=> \(\frac{a}{b}=\frac{a+m}{b+m}=1\left(đpcm\right)\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)
\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến
Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)
- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)
\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)
Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có M = - a + b - b - c + a + c - a
= ( - a + a ) + ( b - b ) + ( - c + c ) - a
= 0 + 0 + 0 - a
= - a
Vì a < 0 => - a > 0
=> M > 0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : M = a(a + 2) - a(a - 5) - 7
=> M = a2 + 2a - a2 + 5a - 7
=> M = (a2 - a2) + (2a + 5a) - 7
=> M = 0 + 7a - 7
=> M = 7.(a - 1) \(⋮\)7
=> M là bội của 7
Ta có: M = a(a + 2) - a(a - 5) - 7
= a2 + 2a - a2 + 5a - 7
= 7a - 7
= 7.(a - 1)\(⋮\)7
\(\Rightarrow M\)là bội của 7