K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

4 tháng 9 2021

tiếp đi bạn

 

 

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

8 tháng 6 2018

8x-4x2-5

= -4x2+8x-5

= -4x2+8x-4-1

= -(4x2-8x+4)-1

= -(2x-2)2-1

do -(2x-2)2 ≤ 0 ∀x

=> -(2x-2)2-1≤ -1 ∀x

=> -(2x-2)2 <0 ∀x

hay 8x-4x2-5<0 ∀x (đpcm)

8 tháng 6 2018

Ta có:

\(8x-4x^2-5=-\left(4x^2-8x+5\right)=-\left(\left(2x\right)^2-2.2x.2+2^2+1\right)=-\left(2x-2\right)^2-1\)\(-\left(2x-2\right)^2\le0\), Với mọi x nên

2 tháng 8 2020

2. -x2 + x - 33 = -x2 + x - 1/4 - 131/4 = -( x2 - x + 1/4 ) - 131/4 = -( x - 1/2 )2 - 131/4

-( x - 1/2 )≤ 0 ∀ x => -( x - 1/2 )2 - 131/4 ≤ -131/4 < 0 ∀ x ( đpcm )

3. x2 + 4x + 33 = x2 + 4x + 4 + 29 = ( x + 2 )2 + 29

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 29 ≥ 29 > 0 ∀ x ( đpcm )

4. x2 + 8x = x2 + 8x + 16 - 16 = ( x + 4 )2 - 16

( x + 4 )2  ≥ 0 ∀ x =>  ( x + 4 )2 - 16 ≥ -16 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

Vậy GTNN của biểu thức = -16, đạt được khi x = -4 

15 tháng 8 2018

a) Ta có :  \(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\)

b) Ta có :  \(4x-x^2-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy ...

6 tháng 10 2017

* Ta có: \(A\left(x\right)=x^2-4x+5=\left(x^2-2\cdot x\cdot2+2^2\right)-2^2+5=\left(x-2\right)^2+1\ge1>0\)

Vậy \(A\left(x\right)=x^2-4x+5>0\)

b. \(B\left(x\right)=x^2+x+1=\left[x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Vậy \(B\left(x\right)=x^2+x+1>0\)

c. \(C\left(x\right)=8x-x^2-17=-x^2+8x-17=-\left(x^2-8x\right)-17=-\left(x^2-2\cdot x\cdot4+4^2\right)+4^2-17=-\left(x-4\right)^2-1\le-1< 0\)

Vậy \(C\left(x\right)=8x-x^2-17< 0\)