Phan tích đa thức sau thanh nhan tu
y(x-2z)^2+8xyx+x(y-2z)^2-2z(x+y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(x-y\right)+x^2-y^2\\ =2\left(x-y\right)+\left(x^2-y^2\right)\\ =2\left(x-y\right)+\left(x+y\right)\left(x-y\right)\\ =\left(x-y\right)\left(2+x-y\right)\)
b) \(x^3-4x^2-9x+36\\ =x^2\cdot x-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\=\left(x-4\right)\left(x^2-9\right)\\ =\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
c) \(2x^2+2y^2-x^2z+2-y^2z-2\\ =2\left(x^2+y^2\right)-z\left(x^2+y^2\right)+\left(2-2\right)\\ =\left(x^2+y^2\right)\left(2-z\right)\)
d) \(x^3+y^3+2x^2-2xy+2y^2\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\\ =\left(x^2-xy+y^2\right)\left(x+y+2\right)\)
e) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\\ =x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\\ =xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy+xz+yz\right)\\ =\left(y+z\right)\left(z+x\right)\left(x+y\right)\)
A. x2 - 3xy
= x (x - 3y)
B. (x + 5)2 - 9
= (x + 5) - 32
= (x + 5 + 3) (x + 5 - 3)
= ( x + 8) ( x + 2)
C. xy + xz - 2y - 2z
= (xy + xz) - (2y + 2z)
= x (y + z) - 2 (y + z)
= (x - 2) (y + z)
Phân tích theo cách nhóm hạng tử nhé bạn !
a, xy + xz - 2y - 2z
= x(y + z) - 2(y + z)
= (x - 2)(y + x)
b, x2 - 6xy + 9y2 - 25z2
= (x - 3y)2 - 25z2
= (x - 3y - 5z)(x - 3y + 5z)
Ngoài ra bạn có thể hỏi mình để bổ sung kiến thức nâng cao !
\(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)