các bạn giải giúp mình nhé:
cho tam giác ABC. Lấy D sao cho A là trung điểm của BD; lấy E sao cho A là trung điểm của EC. Gọi M,N theo thứ tự là trung điểm của BC và ED. Chứng minh A,M,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMDB và ΔMEF có
MD=ME
góc DMB=góc EMF
MB=MF
=>ΔMDB=ΔMEF
b: ΔMDB=ΔMEF
=>DB=EF
=>EC=EF
=>ΔECF cân tại E
A B C M D
a) Xét tứ giác ACDB có:
M là trung điểm của BC (gt).
M là trung điểm của AD (MD = MA)
=> Tứ giác ACDB là hình bình hành (dhnb).
=> AB = DC (Tính chất hình bình hành).
b) Tứ giác ACDB là hình bình hành (cmt).
=> BD // AC (Tính chất hình bình hành).
c) Xét tam giác ABC và tam giác DCB có:
+ BC chung.
+ AB = DC (Tứ giác ACDB là hình bình hành).
+ AC = DB (Tứ giác ACDB là hình bình hành).
=> Tam giác ABC = Tam giác DCB (c - c - c).
A B C E D G
a) Xét \(\Delta\)AGE đáy GE và \(\Delta\)ADE đáy DE có: \(\frac{GE}{DE}=\frac{1}{2}\)( vì G là trung điểm DE )
=> \(\frac{S\left(AGE\right)}{S\left(ADE\right)}=\frac{1}{2}\)
=> \(S\left(ADE\right)=2.S\left(AGE\right)=2.12=24\left(cm^2\right)\)
Xét \(\Delta\)ADE có đáy AE và \(\Delta\)ADC có đáy CD
mà \(AE=\frac{3}{4}AC\Rightarrow S\left(ADE\right)=\frac{3}{4}S\left(ADC\right)\)
=> \(24=\frac{3}{4}S\left(ADC\right)\)
=> \(S\left(ADC\right)=32\left(cm^2\right)\)
Xét \(\Delta\)ADC có đáy DC và \(\Delta\)ABC có đáy BC
mà \(BD=\frac{1}{5}BC\)=> \(CD=\frac{4}{5}BC\)
=> \(S\left(ABD\right)=\frac{4}{5}S\left(ABC\right)\)
=> \(32=\frac{4}{5}S\left(ABC\right)\)
=> S (ABC) = 5 x 32 : 4 = 40 (cm^2)
b) Tỉ số phần trăm diện tích ADE và ABC là:
24 : 40 x 100= 60 %
Đáp số: 60%