K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2022

`(3x-1)^10=(3x-1)`

`=>(3x-1)^10 :(3x-1)=(3x-1):(3x-1)`

`=>(3x-1)^9=1`

`=>3x-1=1`

`=>3x=2`

`=>x=2/3`

17 tháng 6 2022

(3X - 1)10 = (3X -1)

(3X - 1)10 - (3X - 1) = 0

(3X - 1){(3X -1)9 - 1} = 0

3X - 1 = 0 hoặc (3X -1 )9 = 1

3X - 1 = 0

3X = 1

X = 1/3

(3X - 1 )9 - 1 = 0

(3X - 1)9  = 1

3X - 1 = 1

3X = 2

X = 2/3

vậy X ϵ { 1/3;2/3}

 

21 tháng 7 2021

`Q=(3x-1)(9x^2-3x+1)-(1-3x)(1+3x+9x^2)`

`=(3x-1)(9x^2-3x+1)+(3x-1)(9x^2+3x+1)`

`=(3x-1)(9x^2-3x+1+9x^2+3x+1)`

`=(3x-1)(18x^2+2)`

Thay `x=10` vào biểu thức: `Q=(3.10-1)(18 .10^2+2)=52258`

21 tháng 7 2021

thk bạn

 

20 tháng 7 2019

\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1-1}\)

<=> 3x\(=\sqrt{3x+1-1}.\sqrt{3x+10}\)

<=> (3x)2 = (\(\sqrt{3x+1-1}.\sqrt{3x+10}\))2

<=> 9x2 = 9x2 + 30

<=> x = 0

=> x = 0

25 tháng 11 2021

undefined

25 tháng 11 2021

\(\Rightarrow\left(3x-1\right)^{20}-\left(3x-1\right)^{10}=0\\ \Rightarrow\left(3x-1\right)^{10}\left[\left(3x-1\right)^{10}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\\left(3x-1\right)^{10}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\\x=0\end{matrix}\right.\)

a) Ta có: \(x^2-3x+7=1+2x\)

\(\Leftrightarrow x^2-3x+7-1-2x=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

b) Ta có: \(x^2-3x-10=0\)

\(\Leftrightarrow x^2-5x+2x-10=0\)

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy: S={5;-2}

c) Ta có: \(x^2-3x+4=2\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+4=2x-2\)

\(\Leftrightarrow x^2-3x+4-2x+2=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

d) Ta có: \(\left(x+1\right)\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=5\end{matrix}\right.\)

Vậy: S={-1;2;5}

e) Ta có: \(2x^2+3x+1=0\)

\(\Leftrightarrow2x^2+2x+x+1=0\)

\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-1}{2}\right\}\)

f) Ta có: \(4x^2-3x=2x-1\)

\(\Leftrightarrow4x^2-3x-2x+1=0\)

\(\Leftrightarrow4x^2-5x+1=0\)

\(\Leftrightarrow4x^2-4x-x+1=0\)

\(\Leftrightarrow4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{1;\dfrac{1}{4}\right\}\)

3 tháng 2 2021

Ai giúp vs!

NV
20 tháng 7 2021

a. 

ĐKXĐL \(x\ge-\dfrac{1}{3}\)

\(\dfrac{3x}{\sqrt{3x+10}}=\dfrac{3x}{\sqrt{3x+1}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)

\(\Leftrightarrow\sqrt{3x+1}=4\)

\(\Leftrightarrow x=5\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(-1\le x\le1\)

\(\Leftrightarrow\dfrac{\left(1+x-1\right)}{\sqrt{1+x}+1}\left(\sqrt{1-x}+1\right)=2x\)

\(\Leftrightarrow\dfrac{x\left(\sqrt{1-x}+1\right)}{\sqrt{1+x}+1}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{\sqrt{1-x}+1}{\sqrt{1+x}+1}=2\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{1-x}+1=2\sqrt{1+x}+2\)

\(\Leftrightarrow\sqrt{1-x}=2\sqrt{1+x}+1\)

\(\Leftrightarrow1-x=4\left(x+1\right)+1+4\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=-5x-4\) (\(x\le-\dfrac{4}{5}\))

\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)

31 tháng 1 2017

\(\Rightarrow x=0\)

Thử \(\left(3x-1\right)^{10}=\left(3.0-1\right)^{10}=\left(-1\right)^{10}=1\)

\(\left(3x-1\right)^{20}=\left(3.0-1\right)^{20}=\left(-1\right)^{20}=1\)

Suy ra \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)

24 tháng 1 2018

Đề bài yêu cầu tìm gì thế?

24 tháng 1 2018

\(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)

\(\Rightarrow\left(3x-1\right)^{10}=\left(3x-1\right)^{20}=0\)

\(\Rightarrow\left(3x-1\right)^{10}.\left[\left(3x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(3x-1\right)^{10}=0\\\left(3x-1\right)^{10}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}3x-1=0\\3x-1=\pm0\end{cases}}}\)

\(\left(+\right)3x-1=0\Rightarrow x=\frac{1}{3}\)

\(\left(+\right)\orbr{\begin{cases}3x-1=1\\2x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=0\end{cases}}}\)

\(\Rightarrow x\in\left\{\frac{1}{3};\frac{2}{3};0\right\}\)