Giải phương trình \(\sqrt{25-x^2}-\sqrt{10-x^2}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)
=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)
<=> \(x^2-13x+4=0\)
........
\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)
\(< =>x^2-13x-14=0\)
\(< =>\left(x+1\right)\left(x-14\right)=0\)
..............
`sqrt{x^2-25}-6=3sqrt{x+5}-2sqrt{x-5}(x>=5)`
`<=>sqrt{(x-5)(x+5)}+2sqrt{x-5}=3sqrt{x+5}+6`
`<=>sqrt{x-5}(sqrt{x+5}+2)=3(sqrt{x+5}+2)`
`<=>(sqrt{x+5}+2)(sqrt{x-5}-3)=0`
Vì `sqrt{x+5}+2>0`
`<=>sqrt{x-5}-3=0`
`<=>sqrt{x-5}=3`
`<=>x-5=9<=>x=14(tm)`
Vậy `x=14`
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\\ \Leftrightarrow\sqrt{\left(x-5\right)\left(x+5\right)}-6-3\sqrt{x+5}+2\sqrt{x-5}=0\\ \Leftrightarrow\left(2\sqrt{x-5}+\sqrt{\left(x-5\right)\left(x+5\right)}\right)-\left(3\sqrt{x+5}+6\right)=0\Leftrightarrow\sqrt{x-5}\left(2+\sqrt{x+5}\right)-3\left(2+\sqrt{x+5}\right)=0\\ \Leftrightarrow\left(\sqrt{x-5}-3\right)\left(2+\sqrt{x-5}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-5}=3\\\sqrt{x-5}=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=9\\x\in\varnothing\end{matrix}\right.\Leftrightarrow x=14\)
a - b =3
a2 - b2 = 15
=> a+b = 5
=> a =4 ; b = 1
=> 25 - x2 = 16 => x = + -3 thỏa mãn 10 -x2 =1
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
thử nhân lượng liên hợp xem sao bạn
\(DK:x\in\left[-\sqrt{10};\sqrt{10}\right]\)
PT\(\Leftrightarrow\left(\sqrt{25-x^2}-4\right)+\left(1-\sqrt{10-x^2}\right)=0\)
\(\Leftrightarrow\frac{9-x^2}{\sqrt{25-x^2}+4}-\frac{9-x^2}{1+\sqrt{10-x^2}}=0\)
\(\Leftrightarrow\left(9-x^2\right)\left(\frac{1}{\sqrt{25-x^2}+4}-\frac{1}{1+\sqrt{10-x^2}}\right)=0\)
Ta di chung minh:
\(\sqrt{25-x^2}+4>1+\sqrt{10-x^2}\)
\(\Leftrightarrow41-x^2+8\sqrt{25-x^2}>11-x^2+2\sqrt{10-x^2}\)
\(\Leftrightarrow15+4\sqrt{25-x^2}>\sqrt{10-x^2}\)
\(\Leftrightarrow325-x^2+120\sqrt{25-x^2}>10-x^2\)
\(\Leftrightarrow315+120\sqrt{25-x^2}>0\left(True\right)\)
\(\Rightarrow\frac{1}{\sqrt{25-x^2}+4}-\frac{1}{1+\sqrt{10-x^2}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=-3\left(n\right)\end{cases}}\)
Vay PT co nghiem la \(x=3\)va \(x=-3\)