giá trị nhỏ nhất của biểu thức 2x^2+2y^2-2xy-6y+21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$
$=(x+y)^2+x^2+y^2-6x-6y+11$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(K=x^2+2y^2-2xy+2x-6y+8\)
\(K=x^2+2x\left(y-1\right)-2y^2-6y+8\)
\(K=x^2+2x\left(y-1\right)-y^2-2y+1+y^2-4y+4+4\)
\(K=x^2+2x\left(y-1\right)-\left(y-1\right)^2+\left(y-2\right)^2+4\)
\(K=\left(x+y-1\right)^2+\left(y-2\right)^2+4\ge4\forall x;y\)
Dấu "=" xảy ra khi x = -3; y = 4
b: Tham khảo:
a: \(P=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi x=5/2
Bài làm:
a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)
Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)
a) P = x2 - 5x
= ( x2 - 5x + 25/4 ) - 25/4
= ( x - 5/2 )2 - 25/4
( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> MinF = -25/4 <=> x = 5/2
b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010
= [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010
= ( x + y - 1 )2 + ( y - 2 )2 + 2010
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinQ = 2010 <=> x = -1 , y = 2
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10
B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10
B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5
B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)5 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy MinB = 5 <=> x = 1 và y = 2
2A=(2x-y)^2+3(y-2)^2+9>=9
A>=9/2