Tìm m biết m2 - 2m + 2 > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có 2 nghiệm pb thì \(\Delta\ge0\)
\(\Leftrightarrow\Delta\ge0\)
Ta có : \(\Delta=b^2-4ac=\left[-\left(2m-3\right)\right]^2-4\left(-m+2\right)\ge0\)
\(\Leftrightarrow\left(2m-3\right)^2+4m-8\ge0\)
\(\Leftrightarrow4m^2-12m+9+4m-8\ge0\)
\(\Leftrightarrow4m^2-8m+1\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{2+\sqrt{3}}{2}\\m=\dfrac{2-\sqrt{3}}{2}\end{matrix}\right.\)
Phương trình x 2 + (2m – 1)x + m 2 – 2m + 2 = 0
(a = 1; b = 2m – 1; c = m 2 – 2m + 2)
Ta có ∆ = ( 2 m – 1 ) 2 – 4 . ( m 2 – 2 m + 2 ) = 4 m – 7
Gọi x 1 ; x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có
Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt ⇔ Δ > 0 P > 0 S > 0
⇔ 4 m − 7 > 0 1 − 2 m > 0 m 2 − 2 m + 2 > 0 ⇔ m > 7 4 m < 1 2 m − 1 2 + 1 > 0 ( l u o n d u n g ) ⇔ m > 7 4 m < 1 2 ( v o l y )
Vậy không có giá trị nào của m thỏa mãn đề bài
Đáp án: D
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
có :
\(\Delta'=1^2-\left(-m^2+1\right)=m^2\)
pt có \(2\) nghiệm phân biệt \(\Leftrightarrow m^2>0\Leftrightarrow m\ne0\)
\(\Rightarrow x_1=2+m;x_2=2-m\)
theo đề :
\(x_2=x^2_1\Leftrightarrow2-m=\left(2+m\right)^2\)
\(\Leftrightarrow\left(m=\dfrac{-5+\sqrt{17}}{2}\left(ktm\right)\right);\left(m=\dfrac{-5-\sqrt{17}}{2}\left(ktm\right)\right)\)
vậy không có \(m\) thỏa mãn
ta có:m2-2m+2=m2-2m+1+1
=(m-1)2+1
vì (m-1)2\(\ge\)0 nên (m-1)2+1\(\ge\)1 hay (m-1)2+1>0
Vậy (m-1)2+1>0
có phải cậu đích thực học lớp 5 nhưng đang học bài lớp 6 không