Giải phương trình sau hộ mình arigatou
|2x2 - 5x + 3 | = -2x2 -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
`Answer:`
ĐK: `x^3-1>=0`
`<=>(x-1)(x^2+x+1)>0`
`<=>x>=1`
PT tương đương: `2.(x^2+x+1)+3(x-1)=7\sqrt{(x^2+x+1)(x-1)}`
Đặt `a=\sqrt{x^2+x+1}<=>a^2=x^2+x+1;b=\sqrt{x-1}<=>b^2=x-1`
PT tương đương: `2a^2+3b^2=7ab`
`<=>2a^2-7ab+3b^2=0`
`<=>2a^2-ab-6ab+3b^2=0`
`<=>a(2a-b)-3b(2a-1)=0`
`<=>(2a-b)(a-3b)=0`
`<=>2a=b` hoặc `a=3b`
Với `2a=b:`
`2\sqrt{x^2+x+1}=3\sqrt{x-1}`
`<=>4(x^2+x+1)=9(x-1)`
`<=>4x^2-5x+13=0`
`\Delta=5^2-4.4.13<0`
Vậy phương trình vô nghiệm.
Với `a=3b:`
`\sqrt{x^2+x+1}=3\sqrt{x-1}`
`<=>x^2+x+1=9(x-1)`
`<=>x^2-8x+10=0`
`\Delta'=4^2-10=6`
`<=>x=4+-\sqrt{6}`
Vậy phương trình cố nghiệm là `x=4+-\sqrt{6}`
`
(Lưu ý: Các phần giải thích các bạn có thể không trình bày vào bài làm)
2 x 2 + 5 x + 2 = 0 ⇔ 2 x 2 + 5 x = − 2
(Chuyển 2 sang vế phải)
(Tách thành và thêm bớt để vế trái thành bình phương).
Vậy phương trình có hai nghiệm
(Lưu ý: Các phần giải thích các bạn có thể không trình bày vào bài làm)
2x2 + 5x + 2 = 0
⇔ 2x2 + 5x = -2 (Chuyển 2 sang vế phải)
(Tách thành và thêm bớt để vế trái thành bình phương).
Vậy phương trình có hai nghiệm
Đặt m = 2 x 2 +x -2
Ta có: 2 x 2 + x - 2 2 +10 x 2 +5x -16 =0
⇔ 2 x 2 + x - 2 2 +5(2 x 2 +x -2) -6 =0
⇔ m 2 +5m -6 =0
Phương trình m 2 +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng
a + b + c = 0
Suy ra : m 1 =1 , m 2 =-6
m1 =1 ta có: 2 x 2 +x -2 =1 ⇔ 2 x 2 +x -3=0
Phương trình 2 x 2 +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng
a +b+c=0
Suy ra: x 1 =1 , x 2 =-3/2
Với m=-6 ta có: 2 x 2 +x -2 = -6 ⇔ 2 x 2 +x +4 =0
∆ = 1 2 -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm : x 1 =1 , x 2 =-32
Ta có:Giá trị tuyệt đối của một đa thức luôn luôn >=0
Mặt khác, ta có -2x2-2=-2(x2+1) luôn luôn <0(vì x2+1 >=1>0),(-2>0)
-->không thể có giá trị của x phù hợp
Ta có: \(\left|2x^2-5x+3\right|=-2x^2-2\)
\(\Leftrightarrow\left|2x^2-5x+3\right|=-\left(2x^2+2\right)\)
mà \(\left|2x^2-5x+3\right|\ge0\forall x\)
và \(-\left(2x^2+2\right)< 0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(S=\varnothing\)