cho hình vuông abcd có ab =6 cmgọi M,N,Plần lượt là trg điểm BD ,MD,CB tính góc ANP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình của ΔAHB
Suy ra: MN//DP và MN=DP
hay DMNP là hình bình hành
Đáp án B
Gọi H là trung điểm của cạnh AB. Khi đó S H ⊥ ( A B C D )
Ta có S H ⊥ A B ; A B ⊥ H N ; H N ⊥ S H và S H = 3
Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó:
B ( 1 ; 0 ; 0 ) ; A ( - 1 ; 0 ; 0 ) ; N ( 0 ; 2 3 ; 0 ) ; C ( 1 ; 2 3 ; 0 ) ; D ( - 1 ; 2 3 ; 0 ) ; S ( 0 ; 0 ; 3 ) ; M ( - 1 2 ; 0 ; 3 2 ) ; P ( 1 ; 3 ; 0 )
Mặt phẳng (SCD) nhận n 1 → = - 3 6 C D → , S C → = 0 ; 1 ; 2 làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận n 2 → = - 2 3 3 M N → , M P → = 3 ; 1 ; 5 làm một vectơ pháp tuyến.
Gọi ∅ là góc tạo bởi hai mặt phẳng (MNP) và (SCD) thì
cos ∅ = n 1 → . n 2 → n 1 → . n 2 → = 11 145 145
Đáp án C
Rễ thấy Δ C D N = Δ D A M ⇒ D C N ^ = A D M ^
mà C D H ^ + M D H ^ = 90 0 ⇒ C D H ^ + D C H ^ = 90 0 ⇒ C H ⊥ D H
mà C H ⊥ S H do S H ⊥ A B C D ⇒ D H ⊥ S C H .
Như vậy kẻ H K ⊥ S C thì HK là đường vuông góc chung của DM và SC hay HK là khoảng cách cần xác định.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
C D 2 = C H . C N ⇒ C H = C D 2 C N = C D 2 C D 2 + D N 2 = 4 a 2 4 a 2 + a 2 = 2 a 5
1 H K 2 = 1 S H 2 + 1 C H 2 = 1 9 a 2 + 5 16 s 2 = 61 144 a 2 ⇒ H K = 12 a 61 61
Bài 1:
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ=NP và MQ//NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MQ=MN
Xét tứ giác MQPN có
MQ//PN
MQ=PN
Do đó: MQPN là hình bình hành
mà MQ=MN
nên MQPN là hình thoi
Suy ra: MP⊥NQ
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành