cho phương trình: \(x^2+2\left(m+2\right)x-4m-12=0\)
tìm m biết rằng x1=x2^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thảo luận 1
đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2
Thảo luận 2
A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2
\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)
\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)
\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)
=> pt luôn có 2 no pb x1;x2
ad đl viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)
ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)
\(ac=-12< 0\) nên pt luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-12\end{matrix}\right.\)
\(x_1^2-x_2^2-14\left(m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-14\left(m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(m+1\right)-14\left(m+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-1\\x_1-x_2=7\left(1\right)\end{matrix}\right.\)
Xét (1), kết hợp với Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1-x_2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{2}\\x_2=\dfrac{2m-5}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=-12\Leftrightarrow\left(\dfrac{2m+9}{2}\right)\left(\dfrac{2m-5}{2}\right)=-12\)
\(\Leftrightarrow4m^2+8m+3=0\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(m=\left\{-1;-\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m
= 4( m2 + 2m + 1 ) - 16m
= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4
= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m
=> (1) luôn có nghiệm với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)
a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)
\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4-24m=0\)
\(\Leftrightarrow m^2-4m+1=0\)
Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)
a:Sửa đề: x^2-(m+1)x+2m-8=0
Khi m=2 thì (1) sẽ là x^2-3x-4=0
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
b: Δ=(-m-1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24>0
=>(1) luôn có hai nghiệm pb
\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2+4=11
=>m^2-2m=0
=>m=0 hoặc m=2
Bài 2:
Ta có: \(\text{Δ}=\left(2m+2\right)^2-4\cdot\left(m^2+4m+3\right)\)
\(=4m^2+8m+4-4m^2-16m-12\)
\(=-8m-8\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
hay m<-1
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
Ta có: \(2x_1+2x_2-x_1x_2+7=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)
\(\Leftrightarrow2\cdot\left(-2m-2\right)-m^2-4m-3+7=0\)
\(\Leftrightarrow-4m-4-m^2-4m+4=0\)
\(\Leftrightarrow m\left(m+8\right)=0\)
\(\Leftrightarrow m=-8\)
Ta có: \(\Delta'=m^2+2m+1-m^2-4m-3=-2m-2\)
Để PT có 2 nghiệm thì \(-2m-2\ge0\Leftrightarrow m\le-1\)
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_2x_2=m^2+4m+3\end{matrix}\right.\)
theo bài
\(2x_1+2x_2-x_1x_2+7=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)
Thay số:
\(2\left(-2m-2\right)-m^2-4m-3+7=0\)
\(\Leftrightarrow-m^2-8m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\m=0\left(loai\right)\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt
Câu này là hàm số lớp 9 đây :) Sẽ áp dụng Viet :) Cô hướng dẫn thôi nhé ^^
a. Ta tính được
\(\Delta=\left(4m-1\right)^2-4.\left[2\left(m-4\right)\right]=16m^2-16m+33=\left(4m+2\right)^2+29\ge29>0\)
b. Biến đổi \(\left|x_1-x_2\right|=17\Leftrightarrow\left(x_1-x_2\right)^2=289\Leftrightarrow x_1^2+x_2^2-2x_1x_2=289\)
\(=\left(x_1+x_2\right)^2-4x_1x_2=289\)
Theo định lý Viet ta có: \(\hept{\begin{cases}x_1+x_2=1-4m\\x_1x_2=2\left(m-4\right)\end{cases}}\)
Từ đó; \(\left(1-4m\right)^2-4.2.\left(m-4\right)=289\Leftrightarrow16m^2-16m+33=289\Leftrightarrow16m^2-16m-256=0\)
Sau đó em sẽ tìm đc m :)))
Lời giải:
Ta có: $\Delta=(m-3)^2+16>0$ với mọi $m$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m$.
Theo định lý Viet:
$x_1+x_2=m-3$
$x_1x_2=-4$
Có:
$\sqrt{x_1^2+2020}-x_1=\sqrt{x_2^2+2020}+x_2$
$\Leftrightarrow \sqrt{x_1^2+2020}-\sqrt{x_2^2+2020}=x_1+x_2$
$\Leftrightarrow \frac{x_1^2-x_2^2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}=x_1+x_2$
$\Leftrightarrow (x_1+x_2)\left[\frac{x_1-x_2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}-1\right]=0$
$\Leftrightarrow x_1+x_2=0$ hoặc $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$
Với $x_1+x_2=0$
$\Leftrightarrow m-3=0\Leftrightarrow m=3$ (tm)
Với $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$
$\Rightarrow (x_1-x_2)^2=(\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020})^2$
$\Leftrightarrow -2x_1x_2=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$
$\Leftrightarrow 8=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$
$\Leftrightarrow \sqrt{(x_1^2+2020)(x_2^2+2020)}=-2016<0$ (vô lý - loại)
Vậy $m=3$